Georgina Bowyer
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georgina Bowyer.
The New England Journal of Medicine | 2016
Katie Ewer; Tommy Rampling; Navin Venkatraman; Georgina Bowyer; Danny Wright; Teresa Lambe; Egeruan B. Imoukhuede; Ruth O. Payne; Sarah Katharina Fehling; Thomas Strecker; Nadine Biedenkopf; Verena Krähling; Claire M. Tully; Nick J. Edwards; Emma Bentley; Dhan Samuel; Geneviève M. Labbé; Jing Jin; Malick Gibani; A. Minhinnick; M. Wilkie; Ian D. Poulton; N. Lella; Rachel Roberts; Felicity Hartnell; Carly M. Bliss; Kailan Sierra-Davidson; Jonathan Powlson; Eleanor Berrie; Richard S Tedder
BACKGROUND The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).
The Journal of Infectious Diseases | 2015
Susanne H. Hodgson; Katie Ewer; Carly M. Bliss; Nick J. Edwards; Thomas Rampling; Nicholas A. Anagnostou; Eoghan de Barra; Tom Havelock; Georgina Bowyer; Ian D. Poulton; Simone C. de Cassan; Rhea J. Longley; Joseph J. Illingworth; Alexander D. Douglas; Pooja B. Mange; Katharine A. Collins; Rachel Roberts; Stephen Gerry; Eleanor Berrie; Sarah Moyle; Stefano Colloca; Riccardo Cortese; Robert E. Sinden; Sarah C. Gilbert; Philip Bejon; Alison M. Lawrie; Alfredo Nicosia; Saul N. Faust; Adrian V. S. Hill
Background. Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. Methods. We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. Results. One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%–79%, compared with 79%–84% for ChAd63-MVA ME-TRAP. Conclusions. ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. Clinical Trials Registration. NCT01623557.
Science Translational Medicine | 2015
Caroline Ogwang; Domtila Kimani; Nick J. Edwards; Rachel Roberts; Jedidah Mwacharo; Georgina Bowyer; Carly M. Bliss; Susanne H. Hodgson; Patricia Njuguna; Nicola K. Viebig; Alfredo Nicosia; Evelyn Gitau; Sandy Douglas; Joe Illingworth; Kevin Marsh; Alison M. Lawrie; Egeruan B. Imoukhuede; Katie Ewer; Britta C. Urban; Adrian V. S. Hill; Philip Bejon
Vaccination with the recombinant viral vectors chimpanzee adenovirus 63 followed by modified vaccinia Ankara both encoding the malaria sequence ME-TRAP conferred 67% protection against infection with Plasmodium falciparum in Kenyan adults. Setting a TRAP for the malaria parasite Previous studies have shown that T cells induced by vaccines can clear liver-stage malaria parasites, but these vaccines have not been effective in field trials. In a new study, Bejon et al. randomly allocated 121 healthy adult male volunteers to receive either a T cell–inducing vaccine or rabies vaccine as a control. They gave antimalarials to clear malaria parasites from the subjects’ blood and then did frequent blood tests to identify new infections with the malaria parasite Plasmodium falciparum. They found that the volunteers receiving the T cell vaccine had a 67% reduction in the risk of malaria infection during 8 weeks of follow-up. Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016).
The Journal of Infectious Diseases | 2016
Tommy Rampling; Katie Ewer; Georgina Bowyer; Carly M. Bliss; Nick J. Edwards; Danny Wright; Ruth O. Payne; Navin Venkatraman; Eoghan de Barra; Claudia M. Snudden; Ian D. Poulton; Hans de Graaf; Priya Sukhtankar; Rachel Roberts; Karen Ivinson; Rich Weltzin; Bebi-Yassin Rajkumar; Ulrike Wille-Reece; Cynthia K. Lee; Christian F. Ockenhouse; Robert E. Sinden; Stephen Gerry; Alison M. Lawrie; Johan Vekemans; Danielle Morelle; Marc Lievens; Ripley W. Ballou; Graham S. Cooke; Saul N. Faust; Sarah C. Gilbert
Background. The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Method. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara–vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. Results. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. Conclusions. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. Clinical Trials Registration. NCT01883609.
Molecular Therapy | 2014
Domtila Kimani; Ya Jankey Jagne; Momodou Cox; Eva Kimani; Carly M. Bliss; Evelyn Gitau; Caroline Ogwang; Muhammed O. Afolabi; Georgina Bowyer; Katharine A. Collins; Nick J. Edwards; Susanne H. Hodgson; Christopher J. A. Duncan; Alexandra J. Spencer; Miguel G Knight; Abdoulie Drammeh; Nicholas A. Anagnostou; Eleanor Berrie; Sarah Moyle; Sarah C. Gilbert; Peninah Soipei; Joseph Okebe; Stefano Colloca; Riccardo Cortese; Nicola K. Viebig; Rachel Roberts; Alison M. Lawrie; Alfredo Nicosia; Egeruan B. Imoukhuede; Philip Bejon
To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.
PLOS Pathogens | 2017
Nyamekye Obeng-Adjei; Silvia Portugal; Prasida Holla; Shanping Li; Haewon Sohn; Abhijit Ambegaonkar; Jeff Skinner; Georgina Bowyer; Ogobara K. Doumbo; Boubacar Traore; Susan K. Pierce; Peter D. Crompton
Many chronic infections, including malaria and HIV, are associated with a large expansion of CD21−CD27− ‘atypical’ memory B cells (MBCs) that exhibit reduced B cell receptor (BCR) signaling and effector functions. Little is known about the conditions or transcriptional regulators driving atypical MBC differentiation. Here we show that atypical MBCs in malaria-exposed individuals highly express the transcription factor T-bet, and that T-bet expression correlates inversely with BCR signaling and skews toward IgG3 class switching. Moreover, a longitudinal analysis of a subset of children suggested a correlation between the incidence of febrile malaria and the expansion of T-bethi B cells. The Th1-cytokine containing supernatants of malaria-stimulated PBMCs plus BCR cross linking induced T-bet expression in naïve B cells that was abrogated by neutralizing IFN-γ or blocking the IFN-γ receptor on B cells. Accordingly, recombinant IFN-γ plus BCR cross-linking drove T-bet expression in peripheral and tonsillar B cells. Consistent with this, Th1-polarized Tfh (Tfh-1) cells more efficiently induced T-bet expression in naïve B cells. These data provide new insight into the mechanisms underlying atypical MBC differentiation.
Philosophical Transactions of the Royal Society B | 2017
Teresa Lambe; Georgina Bowyer; Katie Ewer
Sporadic outbreaks of Ebola virus infection have been documented since the mid-Seventies and viral exposure can lead to lethal haemorrhagic fever with case fatalities as high as 90%. There is now a comprehensive body of data from both ongoing and completed clinical trials assessing various vaccine strategies, which were rapidly advanced through clinical trials in response to the 2013–2016 Ebola virus disease (EVD) public health emergency. Careful consideration of immunogenicity post vaccination is essential but has been somewhat stifled because of the wide array of immunological assays and outputs that have been used in the numerous clinical trials. We discuss here the different aspects of the immune assays currently used in the Phase I clinical trials for Ebola virus vaccines, and draw comparisons across the immune outputs where possible; various trials have examined both cellular and humoral immunity in European and African cohorts. Assessment of the safety data, the immunological outputs and the ease of field deployment for the various vaccine modalities will help both the scientific community and policy-makers prioritize and potentially license vaccine candidates. If this can be achieved, the next outbreak of Ebola virus, or other emerging pathogen, can be more readily contained and will not have such widespread and devastating consequences. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.
Molecular Therapy | 2017
Carly M. Bliss; Abdoulie Drammeh; Georgina Bowyer; Guillaume S. Sanou; Ya Jankey Jagne; Oumarou Ouédraogo; Nick J. Edwards; Casimir Tarama; Nicolas Ouedraogo; Mireille Ouedraogo; Jainaba Njie-Jobe; Amidou Diarra; Muhammed O. Afolabi; Alfred B. Tiono; Jean Baptiste Yaro; Uche J. Adetifa; Susanne H. Hodgson; Nicholas A. Anagnostou; Rachel Roberts; Christopher J. A. Duncan; Riccardo Cortese; Nicola K. Viebig; Odile Leroy; Alison M. Lawrie; Katie L. Flanagan; Beate Kampmann; Egeruan B. Imoukhuede; Sodiomon B. Sirima; Kalifa Bojang; Adrian V. S. Hill
Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8+ T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8+ and CD4+ T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine.
Open Forum Infectious Diseases | 2016
Teresa Lambe; Tommy Rampling; Dhan Samuel; Georgina Bowyer; Katie Ewer; Navin Venkatraman; Matthew Edmans; Steve Dicks; Adrian V. S. Hill; Richard S Tedder; Sarah C. Gilbert
Blood sampling to assess production of antigen-specific antibodies after immunization is commonly performed, but it presents logistical difficulties for trials carried out during an infectious disease outbreak. In this study, we show that antibodies may be reliably detected in oral fluid collected in a minimally invasive manner without use of sharps. Clinical Trials Registration. NCT02240875.
Scientific Reports | 2018
Carly M. Bliss; Georgina Bowyer; Nicholas A. Anagnostou; Tom Havelock; Claudia M. Snudden; Huw Davies; Simone C. de Cassan; Amy Grobbelaar; Alison M. Lawrie; Navin Venkatraman; Ian D. Poulton; Rachel Roberts; Pooja B. Mange; Prateek Choudhary; Saul N. Faust; Stefano Colloca; Sarah C. Gilbert; Alfredo Nicosia; Adrian V. S. Hill; Katie Ewer
Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.