Georgina Estrada-Navarrete
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Georgina Estrada-Navarrete.
Plant Molecular Biology | 2009
Catalina Arenas-Huertero; Beatriz Pérez; Fernando Rabanal; Daniel Blanco-Melo; Carlos De la Rosa; Georgina Estrada-Navarrete; Federico Sánchez; Alejandra A. Covarrubias; José Luis Reyes
MicroRNAs (miRNAs) are small RNA molecules recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data. We are interested in the identification of miRNAs in Phaseolus vulgaris (common bean) to uncover different plant strategies to cope with adverse conditions and because of its relevance as a crop in developing countries. Here we present the identification of conserved and candidate novel miRNAs in P. vulgaris present in different organs and growth conditions, including drought, abscisic acid treatment, and Rhizobium infection. We also identified cDNA sequences in public databases that represent the corresponding miRNA precursors. In addition, we predicted and validated target mRNAs amongst reported EST and cDNAs for P. vulgaris. We propose that the novel miRNAs present in common bean and other legumes, are involved in regulation of legume-specific processes including adaptation to diverse external cues.
Nature Protocols | 2007
Georgina Estrada-Navarrete; Xochitl Alvarado-Affantranger; Juan-Elías Olivares; Gabriel Guillén; Claudia Díaz-Camino; Francisco Campos; Carmen Quinto; Peter M. Gresshoff; Federico Sánchez
This transformation procedure generates, with high efficiency (70–90%), hairy roots in cultivars, landraces and accessions of Phaseolus vulgaris (common bean) and other Phaseolus spp. Hairy roots rapidly develop after wounding young plantlets with Agrobacterium rhizogenes, at the cotyledon node, and keeping the plants in high-humidity conditions. Callogenesis always precedes hairy-root formation, and after 15 days, when roots develop at wounded sites, the stem with the normal root is cleaved below the hairy root zone. Transgenic roots and nodules co-transformed with a binary vector can be easily identified using a reporter gene. This procedure, in addition to inducing robust transgenic hairy roots that are susceptible to being nodulated by rhizobia and to fixing nitrogen efficiently, sets the foundation for a high-throughput functional genomics approach on the study of root biology and root–microbe interactions. This protocol can be completed within 30 days.
BMC Genomics | 2012
Pablo Peláez; Minerva S Trejo; Luis P. Íñiguez; Georgina Estrada-Navarrete; Alejandra A. Covarrubias; José Luis Reyes; Federico Sánchez
BackgroundMicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illuminas sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris.ResultsSmall RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies.ConclusionsThis work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes.
Molecular Plant-microbe Interactions | 2006
Georgina Estrada-Navarrete; Xochitl Alvarado-Affantranger; Juan-Elías Olivares; Claudia Díaz-Camino; Olivia Santana; Enrique Murillo; Gabriel Guillén; Nayeli Sánchez-Guevara; Jorge Acosta; Carmen Quinto; Dongxue Li; Peter M. Gresshoff; Federico Sánchez
A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: P. coccineus, P. lunatus, and P. acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.
New Phytologist | 2013
Aarón Barraza; Georgina Estrada-Navarrete; María Elena Rodríguez-Alegría; Agustín López-Munguía; Enrique Merino; Carmen Quinto; Federico Sánchez
Legume-rhizobium interactions have been widely studied and characterized, and the disaccharide trehalose has been commonly detected during this symbiotic interaction. It has been proposed that trehalose content in nodules during this symbiotic interaction might be regulated by trehalase. In the present study, we assessed the role of trehalose accumulation by down-regulating trehalase in the nodules of common bean plants. We performed gene expression analysis for trehalase (PvTRE1) during nodule development. PvTRE1 was knocked down by RNA interference (RNAi) in transgenic nodules of the common bean. PvTRE1 expression in nodulated roots is mainly restricted to nodules. Down-regulation of PvTRE1 led to increased trehalose content (78%) and bacteroid number (almost one order of magnitude). In addition, nodule biomass, nitrogenase activity, and GOGAT transcript accumulation were significantly enhanced too. The trehalose accumulation, triggered by PvTRE1 down-regulation, led to a positive impact on the legume-rhizobium symbiotic interaction. This could contribute to the agronomical enhancement of symbiotic nitrogen fixation.
The Plant Cell | 2016
Georgina Estrada-Navarrete; Neftaly Cruz-Mireles; Ramiro Lascano; Xochitl Alvarado-Affantranger; Alejandra Hernández; Aarón Barraza; Juan Elías Olivares; Manoj-Kumar Arthikala; Luis Cárdenas; Carmen Quinto; Federico Sánchez
An autophagy-related process is crucial for the mutualistic interaction of Phaseolus vulgaris with beneficial microorganisms such as Rhizobium tropici and Rhizophagus irregularis. Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis. Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.
BMC Plant Biology | 2011
Juan Elías Olivares; Claudia Díaz-Camino; Georgina Estrada-Navarrete; Xochitl Alvarado-Affantranger; Margarita Rodríguez-Kessler; Fernando Z. Zamudio; Timoteo Olamendi-Portugal; Yamile Márquez; Luis Eduardo Servín; Federico Sánchez
BackgroundThe legume-rhizobium symbiosis requires the formation of root nodules, specialized organs where the nitrogen fixation process takes place. Nodule development is accompanied by the induction of specific plant genes, referred to as nodulin genes. Important roles in processes such as morphogenesis and metabolism have been assigned to nodulins during the legume-rhizobium symbiosis.ResultsHere we report the purification and biochemical characterization of a novel nodulin from common bean (Phaseolus vulgaris L.) root nodules. This protein, called nodulin 41 (PvNod41) was purified through affinity chromatography and was partially sequenced. A genomic clone was then isolated via PCR amplification. PvNod41 is an atypical aspartyl peptidase of the A1B subfamily with an optimal hydrolytic activity at pH 4.5. We demonstrate that PvNod41 has limited peptidase activity against casein and is partially inhibited by pepstatin A. A PvNod41-specific antiserum was used to assess the expression pattern of this protein in different plant organs and throughout root nodule development, revealing that PvNod41 is found only in bean root nodules and is confined to uninfected cells.ConclusionsTo date, only a small number of atypical aspartyl peptidases have been characterized in plants. Their particular spatial and temporal expression patterns along with their unique enzymatic properties imply a high degree of functional specialization. Indeed, PvNod41 is closely related to CDR1, an Arabidopsis thaliana extracellular aspartyl protease involved in defense against bacterial pathogens. PvNod41s biochemical properties and specific cell-type localization, in uninfected cells of the common bean root nodule, strongly suggest that this aspartyl peptidase has a key role in plant defense during the symbiotic interaction.
Frontiers in Plant Science | 2016
Aarón Barraza; Cecilia Contreras-Cubas; Georgina Estrada-Navarrete; José Luis Reyes; Marco A. Juárez-Verdayes; Nelson Avonce; Carmen Quinto; Claudia Díaz-Camino; Federico Sánchez
Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.
Journal of Experimental Botany | 2018
Germán Robert; Nacira Muñoz; Xochitl Alvarado-Affantranger; Laura Saavedra; Vanina Davidenco; Margarita Rodríguez-Kessler; Georgina Estrada-Navarrete; Federico Sánchez; Ramiro Lascano
Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.
Frontiers in Plant Science | 2017
Pablo Peláez; Alejandrina Hernández-López; Georgina Estrada-Navarrete; Federico Sánchez
Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.