Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgina K. Such is active.

Publication


Featured researches published by Georgina K. Such.


Science | 2013

One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering

Hirotaka Ejima; Joseph J. Richardson; Kang Liang; James P. Best; Martin P. van Koeverden; Georgina K. Such; Jiwei Cui; Frank Caruso

One-Step Coverage Controllable formation of thin films often requires slow deposition conditions or multiple rounds of coating. Ejima et al. (p. 154; see the Perspective by Bentley and Payne) report a simple and versatile method for coating surfaces with thin biocompatible films made from the condensation of Fe3+ ions and a natural polyphenol, tannic acid, from aqueous solutions. Flat surfaces, colloidal particles, and even bacterial cells could be coated, and the coats could subsequently be degraded by changing the pH. Thin adherent films formed from ferric ions and a natural polyphenol, tannic acid, can coat a wide variety of surfaces. [Also see Perspective by Bentley and Payne] The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.


Chemical Society Reviews | 2007

Next generation, sequentially assembled ultrathin films: beyond electrostatics

John F. Quinn; Angus P. R. Johnston; Georgina K. Such; Alexander N. Zelikin; Frank Caruso

Over the last 15 years, the layer-by-layer (LbL) assembly technology has proven to be a versatile method for surface modification. This approach is likely to find widespread application because of its simplicity and versatility; however, the conventional use of highly charged materials with limited responsive behaviour presents some key limitations. In this tutorial review, the formation of multilayer thin films prepared through non-electrostatic interactions is reviewed. We discuss the assembly of films via a number of different methodologies, with particular emphasis on those that provide enhanced orientational control, stimuli-responsive behaviour, and improved film stability.


Biomacromolecules | 2012

Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules

Jiwei Cui; Yan Yan; Georgina K. Such; Kang Liang; Christopher J. Ochs; Almar Postma; Frank Caruso

We report a facile approach to immobilize pH-cleavable polymer-drug conjugates in mussel-inspired polydopamine (PDA) capsules for intracellular drug delivery. Our design takes advantage of the facile PDA coating to form capsules, the chemical reactivity of PDA films, and the acid-labile groups in polymer side chains for sustained pH-induced drug release. The anticancer drug doxorubicin (Dox) was conjugated to thiolated poly(methacrylic acid) (PMA(SH)) with a pH-cleavable hydrazone bond, and then immobilized in PDA capsules via robust thiol-catechol reactions between the polymer-drug conjugate and capsule walls. The loaded Dox showed limited release at physiological pH but significant release (over 85%) at endosomal/lysosomal pH. Cell viability assays showed that Dox-loaded PDA capsules enhanced the efficacy of eradicating HeLa cancer cells compared with free drug under the same assay conditions. The reported method provides a new platform for the application of stimuli-responsive PDA capsules as drug delivery systems.


ACS Nano | 2010

Biodegradable click capsules with engineered drug-loaded multilayers.

Christopher J. Ochs; Georgina K. Such; Yan Yan; Martin P. van Koeverden; Frank Caruso

We report the modular assembly of a polymer-drug conjugate into covalently stabilized, responsive, biodegradable, and drug-loaded capsules with control over drug dose and position in the multilayer film. The cancer therapeutic, doxorubicin hydrochloride (DOX), was conjugated to alkyne-functionalized poly(l-glutamic acid) (PGA(Alk)) via amide bond formation. PGA(Alk) and PGA(Alk+DOX) were assembled via hydrogen bonding with poly(N-vinyl pyrrolidone) (PVPON) on planar and colloidal silica templates. The films were subsequently covalently stabilized using diazide cross-linkers, and PVPON was released from the multilayers by altering the solution pH to disrupt hydrogen bonding. After removal of the sacrificial template, single-component PGA(Alk) capsules were obtained and analyzed by optical microscopy, transmission electron microscopy, and atomic force microscopy. The PGA(Alk) capsules were stable in the pH range between 2 and 11 and exhibited reversible swelling/shrinking behavior. PGA(Alk+DOX) was assembled to form drug-loaded polymer capsules with control over drug dose and position in the multilayer system (e.g., DOX in every layer or exclusively in layer 3). The drug-loaded capsules could be degraded enzymatically, resulting in the sustained release of active DOX over approximately 2 h. Cellular uptake studies demonstrate that the viability of cells incubated with DOX-loaded PGA(Alk) capsules significantly decreased. The general applicability of this modular approach, in terms of incorporation of polymer-drug conjugates in other click multilayer systems, was also demonstrated. Biodegradable click capsules with drug-loaded multilayers are promising candidates as carrier systems for biomedical applications.


Journal of the American Chemical Society | 2010

Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules

Marloes M. J. Kamphuis; Angus P. R. Johnston; Georgina K. Such; Henk H. Dam; Richard A. Evans; Andrew M. Scott; Edouard C. Nice; Joan K. Heath; Frank Caruso

Targeted delivery of drugs to specific cells allows a high therapeutic dose to be delivered to the target site with minimal harmful side effects. Combining targeting molecules with nanoengineered drug carriers, such as polymer capsules, micelles and polymersomes, has significant potential to improve the therapeutic delivery and index of a range of drugs. We present a general approach for functionalization of low-fouling, nanoengineered polymer capsules with antibodies using click chemistry. We demonstrate that antibody (Ab)-functionalized capsules specifically bind to colorectal cancer cells even when the target cells constitute less than 0.1% of the total cell population. This precise targeting offers promise for drug delivery applications.


ACS Nano | 2012

Engineering particles for therapeutic delivery: prospects and challenges.

Yan Yan; Georgina K. Such; Angus P. R. Johnston; James P. Best; Frank Caruso

Nanoengineered particles that can facilitate drug formulation and passively target tumors have reached the clinic in recent years. These early successes have driven a new wave of significant innovation in the generation of advanced particles. Recent developments in enabling technologies and chemistries have led to control over key particle properties, including surface functionality, size, shape, and rigidity. Combining these advances with the rapid developments in the discovery of many disease-related characteristics now offers new opportunities for improving particle specificity for targeted therapy. In this Perspective, we summarize recent progress in particle-based therapeutic delivery and discuss important concepts in particle design and biological barriers for developing the next generation of particles.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2017

Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles

Laura I. Selby; Christina Cortez-Jugo; Georgina K. Such; Angus P. R. Johnston

Using nanoparticles to deliver drugs to cells has the potential to revolutionize the treatment of many diseases, including HIV, cancer, and diabetes. One of the major challenges facing this field is controlling where the drug is trafficked once the nanoparticle is taken up into the cell. In particular, if drugs remain localized in an endosomal or lysosomal compartment, the therapeutic can be rendered completely ineffective. To ensure the design of more effective delivery systems we must first develop a better understanding of how nanoparticles and their cargo are trafficked inside cells. This needs to be combined with an understanding of what characteristics are required for nanoparticles to achieve endosomal escape, along with methods to detect endosomal escape effectively. This review is focused into three sections: first, an introduction to the mechanisms governing internalization and trafficking in cells, second, a discussion of methods to detect endosomal escape, and finally, recent advances in controlling endosomal escape from polymer- and lipid-based nanoparticles, with a focus on engineering materials to promote endosomal escape. WIREs Nanomed Nanobiotechnol 2017, 9:e1452. doi: 10.1002/wnan.1452 For further resources related to this article, please visit the WIREs website.


Biomacromolecules | 2008

Low-fouling, biofunctionalized, and biodegradable click capsules.

Christopher J. Ochs; Georgina K. Such; Brigitte Städler; Frank Caruso

We report the synthesis of covalently stabilized hollow capsules from biodegradable materials using a combination of click chemistry and layer-by-layer (LbL) assembly. The biodegradable polymers poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) were modified with alkyne and azide moieties. Linear film buildup was observed for both materials on planar surfaces and colloidal silica templates. A variation of the assembly conditions, such as an increase in the salt concentration and variations in pH, was shown to increase the individual layer thickness by almost 200%. The biodegradable click capsules were analyzed with optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Capsules were uniform in size and had a regular, spherical shape. They were found to be stable between pH 2 and 11 and showed reversible, pH-responsive shrinking/swelling behavior. We also show that covalently stabilized PLL films can be postfunctionalized by depositing a monolayer of heterobifunctional poly(ethylene glycol) (PEG), which provides low-fouling properties and simultaneously enhances specific protein binding. The responsive, biodegradable click films reported herein are promising for a range of applications in the biomedical field.


ACS Nano | 2011

Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles

Yan Yan; Georgina K. Such; Angus P. R. Johnston; Hannah Lomas; Frank Caruso

Layer-by-layer (LbL)-engineered particles have recently emerged as a promising class of materials for applications in biomedicine, with studies progressing from in vitro to in vivo. The versatility of LbL assembly coupled with particle templating has led to engineered particles with specific properties (e.g., stimuli-responsive, high cargo encapsulation efficiency, targeting), thus offering new opportunities in targeted and triggered therapeutic release. This Perspective highlights an important development by Poon et al. on tumor targeting in vivo using LbL-engineered nanoparticles containing a pH-responsive poly(ethylene glycol) (PEG) surface layer. Further, we summarize recent progress in the application of LbL particles in the fields of drug, gene, and vaccine delivery and cancer imaging. Finally, we explore future directions in this field, focusing on the biological processing of LbL-assembled particles.


Biomacromolecules | 2009

Low-fouling poly(N-vinyl pyrrolidone) capsules with engineered degradable properties.

Cameron R. Kinnane; Georgina K. Such; Gema Antequera-García; Yan Yan; Sarah J. Dodds; Luis M. Liz-Marzán; Frank Caruso

We report the assembly of low-fouling polymer capsules with engineered deconstruction properties by using a combination of layer-by-layer (LbL) assembly and click chemistry. Preformed, hydrogen-bonded multilayers of alkyne-functionalized poly(N-vinyl pyrrolidone) (PVPON(Alk)) and poly(methacrylic acid) (PMA) assembled at pH 4 on silica particles were cross-linked with a bisazide linker (containing a disulfide link) through alkyne-azide click chemistry. Following dissolution of the silica template particles, and altering the solution pH to 7.2 to disrupt hydrogen bonding between PVPON(Alk) and PMA to effect removal of PMA, stable, cross-linked PVPON capsules were obtained. The presence of the disulfide bond in the bisazide linker endowed the PVPON capsules with degradable characteristics under model intracellular conditions. The capsules deconstructed within 4 h in the presence of 5 mM glutathione. The cross-linked PVPON(Alk) multilayers (assembled on silica particles) were low-fouling to a range of proteins, including fibrinogen, lysozyme, immunoglobulin G, and bovine serum albumin. Further, MTT assays showed that the PVPON capsules had no effect on the proliferation of cells from a human colon cancer cell line (LIM1899), indicating negligible cytotoxicity toward the LIM1899 cells. The low-fouling, degradable, and low cytotoxicity characteristics of the PVPON capsules makes them attractive as a platform for the development of advanced therapeutic delivery systems.

Collaboration


Dive into the Georgina K. Such's collaboration.

Top Co-Authors

Avatar

Frank Caruso

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang Liang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jiwei Cui

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Yan Yan

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Evans

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Almar Postma

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Zhiyuan Zhu

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge