Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgina Shaw is active.

Publication


Featured researches published by Georgina Shaw.


Thorax | 2012

Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat

Gerard F. Curley; Mairead Hayes; Bilal Ansari; Georgina Shaw; Aideen E. Ryan; Frank Barry; Timothy O'Brien; Daniel O'Toole; John G. Laffey

Background Bone-marrow derived mesenchymal stem cells (MSCs) reduce the severity of evolving acute lung injury (ALI), but their ability to repair the injured lung is not clear. A study was undertaken to determine the potential for MSCs to enhance repair after ventilator-induced lung injury (VILI) and elucidate the mechanisms underlying these effects. Methods Anaesthetised rats underwent injurious ventilation which produced severe ALI. Following recovery, they were given an intravenous injection of MSCs (2×106 cells) or vehicle immediately and a second dose 24 h later. The extent of recovery following VILI was assessed after 48 h. Subsequent experiments examined the potential for non-stem cells and for the MSC secretome to enhance VILI repair. The contribution of specific MSC-secreted mediators was then examined in a wound healing model. Results MSC therapy enhanced repair following VILI. MSCs enhanced restoration of systemic oxygenation and lung compliance, reduced total lung water, decreased lung inflammation and histological lung injury and restored lung structure. They attenuated alveolar tumour necrosis factor α concentrations while increasing concentrations of interleukin 10. These effects were not seen with non-stem cells (ie, rat fibroblasts). MSC-secreted products also enhanced lung repair and attenuated the inflammatory response following VILI. The beneficial effect of the MSC secretome on repair of pulmonary epithelial wounds was attenuated by prior depletion of keratinocyte growth factor. Conclusion MSC therapy enhances lung repair following VILI via a paracrine mechanism that may be keratinocyte growth factor-dependent.


European Journal of Immunology | 2011

Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor

Michelle M. Duffy; Jana Pindjakova; Shirley A. Hanley; Cathal McCarthy; Gudrun A. Weidhofer; Eva Sweeney; Karen English; Georgina Shaw; J. Mary Murphy; Frank Barry; Bernard P. Mahon; Orina Belton; Rhodri Ceredig; Matthew D. Griffin

Mesenchymal stem cells (MSCs) inhibit T‐cell activation and proliferation but their effects on individual T‐cell‐effector pathways and on memory versus naïve T cells remain unclear. MSC influence on the differentiation of naïve and memory CD4+ T cells toward the Th17 phenotype was examined. CD4+ T cells exposed to Th17‐skewing conditions exhibited reduced CD25 and IL‐17A expression following MSC co‐culture. Inhibition of IL‐17A production persisted upon re‐stimulation in the absence of MSCs. These effects were attenuated when cell–cell contact was prevented. Th17 cultures from highly purified naïve‐ and memory‐phenotype responders were similarly inhibited. Th17 inhibition by MSCs was reversed by indomethacin and a selective COX‐2 inhibitor. Media from MSC/Th17 co‐cultures contained increased prostaglandin E2 (PGE2) levels and potently suppressed Th17 differentiation in fresh cultures. MSC‐mediated Th17 inhibition was reversed by a selective EP4 antagonist and was mimicked by synthetic PGE2 and a selective EP4 agonist. Activation‐induced IL‐17A secretion by naturally occurring, effector‐memory Th17 cells from a urinary obstruction model was also inhibited by MSC co‐culture in a COX‐dependent manner. Overall, MSCs potently inhibit Th17 differentiation from naïve and memory T‐cell precursors and inhibit naturally‐occurring Th17 cells derived from a site of inflammation. Suppression entails cell‐contact‐dependent COX‐2 induction resulting in direct Th17 inhibition by PGE2 via EP4.


Journal of Cellular and Molecular Medicine | 2012

Immunogenicity of allogeneic mesenchymal stem cells

Mikhail Nosov; Lisa O'Flynn; Georgina Shaw; Oliver Treacy; Frank Barry; Mary Murphy; Timothy O'Brien; Thomas Ritter

Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule‐1 (VCAM‐1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen‐specific cytotoxic T cells in vitro. However, after treatment with IFN‐γ and IL‐1β, MSCs upregulated MHCI, MHCII and VCAM‐1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4+ T cells from recipient rats. However, intravenous injection of allo‐MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement‐mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo‐MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo‐MSCs. Interestingly, no increased immunogenicity of IFN‐γ stimulated allo‐MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement‐activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications.


Biomaterials | 2012

The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs

Emma Mooney; Joseph N. Mackle; David Blond; Eoin D. O'Cearbhaill; Georgina Shaw; Werner J. Blau; Frank Barry; Valerie Barron; J. Mary Murphy

Once damaged, cardiac muscle has little intrinsic repair capability due to the poor regeneration potential of remaining cardiomyocytes. One method of overcoming this issue is to deliver functional cells to the injured myocardium to promote repair. To address this limitation we sought to test the hypothesis that electroactive carbon nanotubes (CNT) could be employed to direct mesenchymal stem cell (MSC) differentiation towards a cardiomyocyte lineage. Using a two-pronged approach, MSCs exposed to medium containing CNT and MSCs seeded on CNT based polylactic acid scaffolds were electrically stimulated in an electrophysiological bioreactor. After electrical stimulation the cells reoriented perpendicular to the direction of the current and adopted an elongated morphology. Using qPCR, an upregulation in a range of cardiac markers was detected, the greatest of which was observed for cardiac myosin heavy chain (CMHC), where a 40-fold increase was observed for the electrically stimulated cells after 14 days, and a 12-fold increase was observed for the electrically stimulated cells seeded on the PLA scaffolds after 10 days. Differentiation towards a cardioprogenitor cell was more evident from the western blot analysis, where upregulation of Nkx2.5, GATA-4, cardiac troponin t (CTT) and connexin43 (C43) was seen to occur. This was echoed in immunofluorescent staining, where increased levels of CTT, CMHC and C43 protein expression were observed after electrical stimulation for both cells and cell-seeded scaffolds. More interestingly, there was evidence of increased cross talk between the cells as shown by the pattern of C43 staining after electrical stimulation. These results establish a paradigm for nanoscale biomimetic cues that can be readily translated to other electroactive tissue repair applications.


Journal of Cellular and Molecular Medicine | 2008

Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model

Andrea Mohr; Mark Lyons; Laura Deedigan; Tina Harte; Georgina Shaw; Linda Howard; Frank Barry; Timothy O'Brien; Ralf M. Zwacka

Lung cancer is a major public health problem in the western world, and gene therapy strategies to tackle this disease systemically are often impaired by inefficient delivery of the vector to the tumour tissue. Some of the main factors inhibiting systemic delivery are found in the blood stream in the form of red and white blood cells (WBCs) and serum components. Mesenchymal stem cells (MSCs) have been shown to home to tumour sites and could potentially act as a shield and vehicle for a tumouricidal gene therapy vector. Here, we describe the ability of an adenoviral vector expressing TRAIL (Ad.TR) to transduce MSCs and show the apoptosis‐inducing activity of these TRAIL‐carrying MSCs on A549 lung carcinoma cells. Intriguingly, using MSCs transduced with Ad.enhanced‐green‐fluorescent‐protein (EGFP) we could show transfer of viral DNA to cocultured A549 cells resulting in transgenic protein production in these cells, which was not inhibited by exposure of MSCs to human serum containing high levels of adenovirus neutralizing antibodies. Furthermore, Ad.TR‐transduced MSCs were shown not to induce T‐cell proliferation, which may have resulted in cytotoxic T‐cell‐mediated apoptosis induction in the Ad.TR‐transduced MSCs. Apoptosis was also induced in A549 cells by Ad.TR‐transduced MSCs in the presence of physiological concentrations of WBC, erythrocytes and sera from human donors that inhibit or neutralize adenovirus alone. Moreover, we could show tumour growth reduction with TRAIL‐loaded MSCs in an A549 xenograft mouse model. This is the first study that demonstrates the potential therapeutic utility of Ad.TR‐transduced MSCs in cancer cells and the stability of this vector in the context of the blood environment.


Diabetes | 2013

Topical Administration of Allogeneic Mesenchymal Stromal Cells Seeded in a Collagen Scaffold Augments Wound Healing and Increases Angiogenesis in the Diabetic Rabbit Ulcer

Aonghus O’Loughlin; Mangesh Kulkarni; Michael Creane; Erin E. Vaughan; Emma Mooney; Georgina Shaw; Mary Murphy; Peter Dockery; Abhay Pandit; Timothy O’Brien

There is a critical clinical need to develop therapies for nonhealing diabetic foot ulcers. Topically applied mesenchymal stromal cells (MSCs) provide a novel treatment to augment diabetic wound healing. A central pathological factor in nonhealing diabetic ulcers is an impaired blood supply. It was hypothesized that topically applied allogeneic MSCs would improve wound healing by augmenting angiogenesis. Allogeneic nondiabetic bone-marrow derived MSCs were seeded in a collagen scaffold. The cells were applied to a full-thickness cutaneous wound in the alloxan-induced diabetic rabbit ear ulcer model in a dose escalation fashion. Percentage wound closure and angiogenesis at 1 week was assessed using wound tracings and stereology, respectively. The topical application of 1,000,000 MSCs on a collagen scaffold demonstrated increased percentage wound closure when compared with lower doses. The collagen and collagen seeded with MSCs treatments result in increased angiogenesis when compared with untreated wounds. An improvement in wound healing as assessed by percentage wound closure was observed only at the highest cell dose. This cell-based therapy provides a novel therapeutic strategy for increasing wound closure and augmenting angiogenesis, which is a central pathophysiological deficit in the nonhealing diabetic foot ulcer.


Cell Cycle | 2011

Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation

Áine M. Prendergast; Séverine Cruet-Hennequart; Georgina Shaw; Frank Barry; Michael P. Carty

DNA damaging agents are widely used in treatment of hematogical malignancies and solid tumors. While effects on hematopoietic stem cells have been characterized, less is known about the DNA damage response in human mesenchymal stem cells (hMSCs) in the bone marrow stroma, progenitors of osteoblasts, chondrocytes and adipocytes. To elucidate the response of undifferentiated hMSCs to γ-irradiation and cisplatin, key DNA damage responses have been characterised in hMSCs from normal adult donors. Cisplatin and γ-irradiation activated the DNA damage response in hMSCs, including induction of p53 and p21, and activation of PI3 kinase-related protein kinase (PIKK)-dependent phosphorylation of histone H2AX on serine 139, and replication protein A2 on serine4/serine8. Chemical inhibition of ATM or DNA-PK reduced DNA damage-induced phosphorylation of H2AX, indicating a role for both PIKKs in the response of hMSCs to DNA damage. Consistent with repair of DNA strand breaks, γ-H2AX staining decreased by 24 hours following gamma-irradiation. γ-irradiation arrested hMSCs in the G1 phase of the cell cycle, while cisplatin induced S-phase arrest, mediated in part by the ATR/Chk1 checkpoint pathway. In hMSCs isolated from a chronic lymphocytic leukemia (CLL) patient, p53 and p21 were induced by cisplatin and γ-irradiation, while RPA2 was phosphorylated on serine4/8 in particular following cisplatin. Compared to peripheral blood lymphocytes or the leukemia cell line K562, both normal hMSCs and CLL-derived hMSCs were more resistant to cisplatin and γ-irradiation. These results provide insights into key pathways mediating the response of bone marrow-derived hMSCs to DNA damaging agents used in cancer treatment.


Molecular Therapy | 2014

Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation

Aideen E. Ryan; Paul Lohan; Lisa O'Flynn; Oliver Treacy; Xizhe Chen; Cynthia M. Coleman; Georgina Shaw; Mary Murphy; Frank Barry; Matthew D. Griffin; Thomas Ritter

Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3(+) and CD68(+) infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use.


Journal of Controlled Release | 2015

A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells

Irene Mencía Castaño; Caroline M. Curtin; Georgina Shaw; J. Mary Murphy; Garry P. Duffy; Fergal J. O'Brien

Manipulation of gene expression through the use of microRNAs (miRNAs) offers tremendous potential for the field of tissue engineering. However, the lack of sufficient site-specific and bioactive delivery systems has severely hampered the clinical translation of miRNA-based therapies. In this study, we developed a novel non-viral bioactive delivery platform for miRNA mimics and antagomiRs to allow for a vast range of therapeutic applications. By combining nanohydroxyapatite (nHA) particles with reporter miRNAs (nanomiRs) and collagen-nanohydroxyapatite scaffolds, this work introduces the first non-viral, non-lipid platform to date, capable of efficient delivery of mature miRNA molecules to human mesenchymal stem cells (hMSCs), a particularly difficult cell type to transfect effectively, with minimal treatment-associated cytotoxicity. Firstly, miRNAs were successfully delivered to hMSCs in monolayer, with internalisation efficiencies of 17.4 and 39.6% for nanomiR-mimics and nanoantagomiRs respectively, and both nanomiR-mimics and nanoantagomiRs yielded sustained interfering activity of greater than 90% in monolayer over 7 days. When applied to 3D scaffolds, significant RNA interference of 20% for nanomiR-mimics and 88.4% for nanoantagomiRs was achieved with no cytotoxicity issues over a 7 day period. In summary, in-house synthesised non-viral nHA particles efficiently delivered reporter miRNAs both in monolayer and on scaffolds demonstrating the immense potential of this innovative miRNA-activated scaffold system for tissue engineering applications.


Arthritis Research & Therapy | 2012

Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis

Catherine Sullivan; J. Mary Murphy; Matthew D. Griffin; Ryan M. Porter; Christopher H. Evans; Cathal O'Flatharta; Georgina Shaw; Frank Barry

IntroductionThe immunological and homing properties of mesenchymal stem cells (MSCs) provide a potentially attractive treatment for arthritis. The objective of this study was to determine effects of genetic disparity on the immunosuppressive potential of MSCs in vitro and in vivo within collagen induced arthritis (CIA).MethodsThe ability of DBA/1, FVB and BALB/c MSC preparations to impact the cytokine release profile of CD3/CD28 stimulated DBA/1 T cells was assessed in vitro. The effect of systemically delivered MSCs on the progression of CIA and cytokine production was assessed in vivo.ResultsAll MSC preparations suppressed the release of TNFα and augmented the secretion of IL-4 and IL-10 by stimulated DBA/1 T-cells. However, assessment of the ratio of IFNγ to IL-4 production indicated that the more genetically distant BALB/c MSCs had significantly less immunosuppressive capacity. Systemic delivery of BALB/c MSC resulted in an exacerbation of CIA disease score in vivo and a higher erosive disease burden. This was not seen after treatment with syngeneic or partially mismatched MSCs. An increase in serum levels of IL-1β was observed up to 20 days post treatment with allogeneic MSCs. An initial elevation of IL-17 in these treatment groups persisted in those treated with fully mismatched BALB/c MSCs. Over the course of the study, there was a significant suppression of serum IL-17 levels in groups treated with syngeneic MSCs.ConclusionsThese data demonstrate a significant difference in the immunosuppressive properties of syngeneic and allogeneic MSCs in vitro and in vivo, which needs to be appreciated when developing MSC based therapies for inflammatory arthritis.

Collaboration


Dive into the Georgina Shaw's collaboration.

Top Co-Authors

Avatar

Frank Barry

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Mary Murphy

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

M. Murphy

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Timothy O'Brien

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Valerie Barron

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Emma Mooney

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

J. Mary Murphy

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Cathal O'Flatharta

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Cynthia M. Coleman

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Peter Dockery

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge