Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Georgy K. Fukin is active.

Publication


Featured researches published by Georgy K. Fukin.


Inorganic Chemistry | 2009

Yttrium complexes supported by linked bis(amide) ligand: synthesis, structure, and catalytic activity in the ring-opening polymerization of cyclic esters.

Tatyana V. Mahrova; Georgy K. Fukin; Anton V. Cherkasov; Alexander A. Trifonov; Noureddine Ajellal; Jean-François Carpentier

A series of new yttrium complexes supported by the bulky enediamido dianionic ligand DAB(2-) (DAB(2-) = (2,6-C(6)H(3)iPr(2))NC(Me)=C(Me)N(2,6-C(6)H(3)iPr(2))(2-)), that is, {DAB}Y(THF)(2)(mu-Cl)(2)Li(THF)(2) (1), {DAB}Y(OtBu)(THF)(DME) (2), and {{DAB}Y(BH(4))(2)}{Li(DME)(3)} (3), was synthesized by salt metathesis. The complexes were isolated after recrystallization in 73, 66, and 52% yield, respectively, and characterized in solution by NMR and in the solid state by single-crystal X-ray diffraction studies. In complex 1, the DAB(2-) ligand is bonded to the metal center via two covalent YN bonds, while in complexes 2 and 3 additional eta(2)-coordination of the C=C bond to the metal atom is observed, both in solution and in the solid state. The tert-butoxide and borohydride complexes 2 and 3 act as monoinitiators for the room temperature ring-opening polymerization of racemic lactide and beta-butyrolactone, providing atactic polymers with controlled molecular weights and relatively narrow polydispersities (M(w)/M(n) = 1.15-1.82). Effectively immortal ROP of lactide with as many as 50 equiv of isopropanol per metal center was performed using complex 2 as the catalyst.


Journal of Materials Chemistry | 2011

Near-infrared electroluminescent lanthanide [Pr(III), Nd(III), Ho(III), Er(III), Tm(III), and Yb(III)] N,O-chelated complexes for organic light-emitting devices

Marina A. Katkova; Anatoly P. Pushkarev; Tatyana V. Balashova; Alexey N. Konev; Georgy K. Fukin; Sergey Yu. Ketkov; M. N. Bochkarev

New near-IR electroluminescent complexes of Pr3+, Nd3+, Ho3+, Er3+, Tm3+, Yb3+ with N,O-chelated ligands, Ln2(OON)6 (OON = 2-(2-benzoxyazol-2-yl)phenolate) and Ln2(SON)6 (SON = 2-(2-benzothiazol-2-yl)phenolate), were synthesized by the reaction of Ln[N(SiMe3)2]3 and the corresponding N,O-chelating ligand. X-Ray analysis for the Pr and Nd compounds reveals centrosymmetric dimeric structures of the complexes. The solid-state electronic absorption spectra and the electroluminescent spectra show long-wavelength 4f–4f transitions which provide potential use of the compounds as NIR emitting materials in organic light-emitting devices (OLEDs). When constructing OLEDs based on Ln2(OON)6 and Ln2(SON)6, the best results were achieved with the Nd3+ and Yb3+ complexes, where the NIR wall plug efficiency of the ITO/TPD/Ln-complex/BATH/Yb system is 0.82 and 1.22 mW W−1, respectively.


Inorganic Chemistry | 2014

Divalent Heteroleptic Ytterbium Complexes – Effective Catalysts for Intermolecular Styrene Hydrophosphination and Hydroamination

Ivan V. Basalov; Sorin Claudiu Rosça; Dmitry M. Lyubov; Alexander N. Selikhov; Georgy K. Fukin; Yann Sarazin; Jean-Franco̧is Carpentier; Alexander A. Trifonov

New heteroleptic Yb(II)-amide species supported by amidinate and 1,3,6,8-tetra-tert-butylcarbazol-9-yl ligands [2-MeOC6H4NC(tBu)N(C6H3-iPr2-2,6)]YbN(SiMe3)2(THF) (6) and [1,3,6,8-tBu4C12H4N]Yb[N(SiMe3)2](THF)n (n = 1 (7), 2 (8)) were synthesized using the amine elimination approach. Complex 6 features an unusual κ(1)-N,κ(2)-O,η(6)-arene coordination mode of the amidinate ligand onto Yb(II). Complexes 7 and 8 represent the first examples of lanthanide complexes with π-coordination of carbazol-9-yl ligands. Complexes 6 and 7, as well as the amidinate-Yb(II)-amide [tBuC(NC6H3-iPr2-2,6)2]YbN(SiMe3)2(THF) (5), are efficient precatalysts for the intermolecular hydrophosphination and hydroamination of styrene with diphenylphosphine, phenylphosphine, and pyrrolidine to give exclusively the anti-Markovnikov monoaddition product. For both types of reaction, the best performances were observed with carbazol-9-yl complex 7 (TONs up to 92 and 48 mol/mol at 60 °C, respectively).


New Journal of Chemistry | 2011

Neodymium borohydride complexes supported by diamino-bis(phenoxide) ligands : diversity of synthetic and structural chemistry, and catalytic activity in ring-opening polymerization of cyclic esters

Mikhail A. Sinenkov; Georgy K. Fukin; Anton V. Cherkasov; Noureddine Ajellal; Thierry Roisnel; Francesca M. Kerton; Jean-François Carpentier; Alexander A. Trifonov

New heterobimetallic borohydrido neodymium complexes {[OONN]1Nd(BH4)(μ-BH4)Li(THF)}2 (1) and [OONN]3Nd(BH4)(μ-BH4)Li(THF)2 (3) supported by diamino-bis(phenoxide) ligands ([OONN]1 = {CH2N(Me)CH2-3,5-Me,t-Bu-C6H2O}2; [OONN]3 = C5H4NCH2N{CH2-3,5-Me,t-Bu-C6H2O}2) were synthesized by the reactions of Nd(BH4)3(THF)2 with equimolar amounts of dilithium derivatives of diamino-bis(phenol)s Li2[OONN]n and isolated in high yields. In the case of Li2[OONN]2 ([OONN]2 = Me2NCH2CH2N{CH2-3,5-t-Bu-C6H2O}2), the same synthetic procedure afforded the heterobimetallic bis(phenoxide) complex Li{Nd[OONN2]2} (2). The structures of complexes 1–3 were established by X-ray diffraction studies. Compounds 1–3 act as single-site initiators for the ring-opening polymerization (ROP) of racemic lactide and racemic β-butyrolactone under mild conditions (20 °C), providing atactic polymers with controlled molecular weights and relatively narrow polydispersities (Mw/Mn = 1.07–1.82). While 1 and 3 initiate polymerizationvia their borohydride groups, ROP with 2 proceeds viainsertion into the Nd–O(ligand) bond.


Chemistry: A European Journal | 2010

Reduction of Digallane [(dpp‐bian)GaGa(dpp‐bian)] with Group 1 and 2 Metals

Igor L. Fedushkin; Anton N. Lukoyanov; Alexandra N. Tishkina; Georgy K. Fukin; Konstantin A. Lyssenko; Markus Hummert

The reduction of digallane [(dpp-bian)Ga-Ga(dpp-bian)] (1) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal-gallium bonds, [(dpp-bian)Ga-Li(Et(2)O)(3)] (2), [(dpp-bian)Ga-Na(Et(2)O)(3)] (3), and [(dpp-bian)Ga-K(thf)(5)] (7), respectively. Crystallization of 3 from DME produces compound [(dpp-bian)Ga-Na(dme)(2)] (4). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp-bian)Ga-Na(thf)(3)(Et(2)O)] (5). Ionic [(dpp-bian)Ga](-)[Na([18]crown-6)(thf)(2)](+) (6a) and [(dpp-bian)Ga](-)[Na(Ph(3)PO)(3)(thf)](+) (6b) were obtained from THF after treatment of 3 with [18]crown-6 and Ph(3)PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp-bian)Ga](2)M(thf)(n) (M=Mg (8), n=3; M=Ca (9), Sr (10), n=4; M=Ba (11), n=5). The molecular structures of 4-7 and 11 have been determined by X-ray crystallography. The Ga-Na bond lengths in 3-5 vary notably depending on the coordination environment of the sodium atom.


Dalton Transactions | 2009

Acenaphthene-1,2-diimine chromium complexes.

Igor L. Fedushkin; Valentin M. Makarov; Vladimir G. Sokolov; Georgy K. Fukin

The reaction of (dpp-BIAN)Mg(THF)3 (1) with anhydrous CrCl3 in THF at 80 degrees C affords the mixed chromium-magnesium complex (dpp-BIAN)Cr(mu-Cl)3Mg(THF)3 (2). The treatment of 2 with 1,4-dioxane causes the elimination of MgCl2 and the formation of dimeric [(dpp-BIAN)Cr(mu-Cl)(THF)]2 (3). The reaction of (dpp-BIAN)Na2 with CrCl3 gives the chlorine-free compound [Na(THF)6][(dpp-BIAN)2Cr] (4). Paramagnetic complexes 2, 3 and 4 have been characterized by IR and electronic absorption spectroscopy. The magnetic susceptibilities of 2 and 4 have been determined in solution using Evans method. The molecular structures of 2-4 have been established by single crystal X-ray analysis.


Inorganic Chemistry | 2014

Digallane with Redox-Active Diimine Ligand: Dualism of Electron-Transfer Reactions

Igor L. Fedushkin; Alexandra A. Skatova; Vladimir A. Dodonov; Valentina A. Chudakova; Natalia L. Bazyakina; Alexander V. Piskunov; Serhiy Demeshko; Georgy K. Fukin

The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.


Russian Chemical Bulletin | 2007

Functionalization of sterically hindered o-benzoquinones: amino-substituted 3,6-di(tert-butyl)-o-benzoquinones

G. A. Abakumov; V. K. Cherkasov; T. N. Kocherova; N. O. Druzhkov; Yu. A. Kurskii; M. P. Bubnov; Georgy K. Fukin; L. G. Abakumova

New sterically hindered functionalized o-quinones were synthesized by the 1,4-nucleophilic addition of secondary cyclic amines to 3,6-di(tert-butyl)-o-benzoquinone. The ability of these o-quinones to form o-semiquinone complexes with transition and main-group metals was studied by ESR spectroscopy in solution.


Inorganic Chemistry | 2016

Amido Ln(II) Complexes Coordinated by Bi- and Tridentate Amidinate Ligands: Nonconventional Coordination Modes of Amidinate Ligands and Catalytic Activity in Intermolecular Hydrophosphination of Styrenes and Tolane

Ivan V. Basalov; Olga S. Yurova; Anton V. Cherkasov; Georgy K. Fukin; Alexander A. Trifonov

Heteroleptic Ln(II) and Ca(II) amides [tBuC(NC6H3-iPr2-2,6)2]MN(SiMe3)2(THF) (M = Yb (1Yb), Ca (1Ca)), [2-MeOC6H4NC(tBu)N(C6H3-iPr2-2,6)]LnN(SiMe3)2(THF) (Ln = Sm (2Sm), Yb (2Yb)), and [2-Ph2P(O)C6H4NC(tBu)N(C6H3-Me2-2,6)]YbN(SiMe3)2(THF) (3Yb) coordinated by bi- and tridentate amidinate ligands were obtained by the amine elimination reactions of M[N(SiMe3)2](THF)2 (M = Yb, Sm, Ca) with parent amidines in good yields. Complex [tBuC(NC6H3-iPr2-2,6)2]SmN(SiMe3)2 can be obtained only by a salt metathesis reaction of [tBuC(NC6H3-2,6-iPr2)2]SmI(THF)2 with NaN(SiMe3)2. Unlike 1Yb and 1Ca in 1Sm the amidinate ligand is coordinated to metal ion in κ(1)-amido:η(6)-arene fashion preventing THF coordination. The derivatives of tridentate amidinate ligands bearing pendant donor 2-MeOC6H4 or 2-Ph2P(O)C6H4N groups feature nonconventional κ(1)-N,κ(2)-O,η(6)-arene coordination mode. Complexes 1Ca, 1Sm, 1Yb, 2Sm, 2Yb, and 3Yb proved to be efficient catalysts for styrene hydrophosphination with PhPH2 and Ph2PH. In styrene hydrophosphination with PhPH2 all the catalysts perform excellent chemoselectivity and afford a monoaddition product-secondary phosphine (PhCH2CH2)PhPH. Moreover, all the catalysts perform hydrophosphination reactions regioselectively with exclusive formation of the anti-Markovnikov addition product. Within the series of complexes coordinated by the same amidinate ligand catalytic activity decreases in the following order 1Ca ≥ 1Sm>1Yb. The turnover frequencies were in the range of TOF ≈ 0.3-0.7 h(-1). However, application of tridentate amidinate ligand allowed one to increase catalytic activity significantly: for 2Sm TOF was found to be 8.3 h(-1). For the addition of PhPH2 to para-substituted styrenes catalyzed by 2Sm it was found that electron-withdrawing substituents (Cl, F) do not affect the reaction rate while electron-donating groups (tBu, OMe) noticeably slow down the reaction.


Russian Journal of Coordination Chemistry | 2006

Free radical fixation by tin(IV) diphenylcatecholate complexes

A. V. Lado; A. V. Piskunov; V. K. Cherkasov; Georgy K. Fukin; G. A. Abakumov

The reactions of sodium and thallium catecholates CatM2 (Cat is the 3,6-di-tert-butylpyrocatechol dianion; M = Na, T1) with tin diphenyl dichloride afford new tin catecholate complexes Ph2SnCat · THF (I) and Ph2SnCat (II). The molecular structure of pentacoordinated complex I is determined by X-ray diffraction analysis. The synthesized complexes are capable of fixating both short-lived (PhC(O)O., (CH3)2NC(S)S., and NC(CH3)2C.) and stable free radicals (aroxyl, nitroxyl, triphenylmethyl, and phenoxazinyl) to form stable o-semiquinone tin derivatives.

Collaboration


Dive into the Georgy K. Fukin's collaboration.

Top Co-Authors

Avatar

G. A. Abakumov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. K. Cherkasov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton V. Cherkasov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. N. Bochkarev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. V. Piskunov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu. A. Kurskii

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. V. Baranov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Evgenii V. Baranov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge