Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald Brenner-Weiss is active.

Publication


Featured researches published by Gerald Brenner-Weiss.


Frontiers in Microbiology | 2015

The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level

Joana A. Moscoso; Rachel Duchesne; Thibaut Rosay; Laurène Fito-Boncompte; Gwendoline Gicquel; Olivier Maillot; Magalie Bénard; Alexis Bazire; Gerald Brenner-Weiss; Olivier Lesouhaitier; Patrice Lerouge; Nicole Orange; Marc Feuilloley; Joerg Overhage; Alain Filloux; Sylvie Chevalier

OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.


Analytical and Bioanalytical Chemistry | 2008

Development and trends of biosurfactant analysis and purification using rhamnolipids as an example

M. Heyd; A. Kohnert; T.-H. Tan; Michael Nusser; Frank Kirschhöfer; Gerald Brenner-Weiss; Matthias Franzreb; S. Berensmeier

During the last few decades, increasing interest in biological surfactants led to an intensification of research for the cost-efficient production of biosurfactants compared with traditional petrochemical surface-active components. The quest for alternative production strains also is associated with new demands on biosurfactant analysis. The present paper gives an overview of existing analytical methods, based on the example of rhamnolipids. The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained. High-performance liquid chromatography (HPLC) coupled with mass spectrometry currently presents the most precise method for rhamnolipid identification and quantification. Suitable approaches to accelerate rhamnolipid quantification for better control of biosurfactant production are HPLC analysis directly from culture broth by adding an internal standard or Fourier transform infrared attenuated total reflectance spectroscopy measurements of culture broth as a possible quasi-online quantification method in the future. The search for alternative rhamnolipid-producing strains makes a structure analysis and constant adaptation of the existing quantification methods necessary. Therefore, simple colorimetric tests based on whole rhamnolipid content can be useful for strain and medium screening. Furthermore, rhamnolipid purification from a fermentation broth will be considered depending on the following application.


Infection and Immunity | 2006

Induction of Neutrophil Chemotaxis by the Quorum-Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone

Sabine Zimmermann; Christof Wagner; Wencke Müller; Gerald Brenner-Weiss; Friederike Hug; Birgit Prior; Ursula Obst; Gertrud Maria Hänsch

ABSTRACT Acyl homoserine lactones are synthesized by Pseudomonas aeruginosa as signaling molecules which control production of virulence factors and biofilm formation in a paracrine manner. We found that N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL), but not its 3-deoxo isomer or acyl-homoserine lactones with shorter fatty acids, induced the directed migration (chemotaxis) of human polymorphonuclear neutrophils (PMN) in vitro. By use of selective inhibitors a signaling pathway, comprising phosphotyrosine kinases, phospholipase C, protein kinase C, and mitogen-activated protein kinase C, could be delineated. In contrast to the well-studied chemokines complement C5a and interleukin 8, the chemotaxis did not depend on pertussis toxin-sensitive G proteins, indicating that 3OC12-HSL uses another signaling pathway. Strong evidence for the presence of a receptor for 3OC12-HSL on PMN was derived from uptake studies; by use of radiolabeled 3OC12-HSL, specific and saturable binding to PMN was seen. Taken together, our data provide evidence that PMN recognize and migrate toward a source of 3OC12-HSL (that is, to the site of a developing biofilm). We propose that this early attraction of PMN could contribute to prevention of biofilm formation.


Toxicology Letters | 2012

Identification of serum proteins bound to industrial nanomaterials

Hermelindis Ruh; Boris Kühl; Gerald Brenner-Weiss; Carsten Hopf; S. Diabate; Carsten Weiss

Nanoparticles (NPs) are decorated with proteins and other biomolecules when they get into contact with biological systems. The presence of proteins in cell culture medium can therefore have effects on the biological outcome in cell-based tests. In this study, the manufactured nanomaterials silicon dioxide (SiO(2)), titanium dioxide (TiO(2)), iron-III-oxide (Fe(2)O(3)), and carbon black (CB) were used to study their interaction with single proteins from bovine and human plasma (albumin, fibrinogen and IgG) as well as with complete human serum. The protein binding capacity of the material was investigated and 1D gel electrophoresis was used to separate the bound proteins and to identify the bands by matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) mass spectrometry. We found that the NP surface chemistry had a great impact on the amount of bound protein with distinct ligands for each of the tested particles. The hydrophobic CB NPs bound much more protein than the hydrophilic metal oxide NPs. Among the single proteins investigated, fibrinogen showed the strongest affinity for SiO(2), TiO(2) and CB NPs. The identified proteins from human serum adsorbed to these NPs were very different. Only apolipoprotein A1 was found to be adsorbed to all NPs. These studies will help to explain the different degree of biological responses observed after in vitro exposure of cells in the absence or presence of serum and might also support the interpretation of in vivo experiments were NPs come directly into contact with blood plasma.


ACS Chemical Biology | 2012

A chemical screening system for glucocorticoid stress hormone signaling in an intact vertebrate.

Benjamin D. Weger; Meltem Weger; Michael Nusser; Gerald Brenner-Weiss; Thomas Dickmeis

Glucocorticoids, steroid hormones of the adrenal gland, are an integral part of the stress response and regulate glucose metabolism. Natural and synthetic glucocorticoids are widely used in anti-inflammatory therapy but can have severe side effects. In vivo tests are needed to identify novel glucocorticoids and to screen compounds for unwanted effects on glucocorticoid signaling. We created the Glucocorticoid Responsive In vivoZebrafish Luciferase activitY assay to monitor glucocorticoid signaling in vivo. The GRIZLY assay detects stress-induced glucocorticoid production in single zebrafish larvae, measures disruption of glucocorticoid signaling by an organotin pollutant metabolite, and specifically identifies a compound stimulating endogenous glucocorticoid production in a chemical screen. Our assay has broad applications in stress research, environmental monitoring, and drug discovery.


British Journal of Nutrition | 2010

Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

Anke Borowicki; Katrin Stein; Daniel Scharlau; Kerstin Scheu; Gerald Brenner-Weiss; Ursula Obst; Jürgen Hollmann; Meinolf Georg Lindhauer; Norbert Wachter; Michael Glei

Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.


PLOS ONE | 2013

Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa.

Nikola Strempel; Anke Neidig; Michael Nusser; Robert Geffers; Olivier Lesouhaitier; Gerald Brenner-Weiss; Joerg Overhage

A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.


Journal of Chromatography A | 2003

Analysis of non-covalent protein complexes by capillary electrophoresis--time-of-flight mass spectrometry.

Gerald Brenner-Weiss; Frank Kirschhöfer; Boris Kühl; Michael Nusser; Ursula Obst

A capillary electrophoresis-electrospray ionisation time-of-flight mass spectrometry (CE-ESI-TOF-MS) method for characterisation of non-covalent protein complexes is described using a coaxial liquid sheath-flow sprayer. The CE capillary was connected to the mass spectrometer using a commercial CE-MS sprayer mounted on a ceramic holder of the ESI interface of the mass spectrometer. Using myoglobin (Mb) as an example of non-covalent protein complex, the effect on complex stability caused by organic modifiers added to the sheath liquid was analysed. Depending on the amount of methanol, either intact Mb or the apoprotein and the prosthetic heme group were detected.


International Journal of Artificial Organs | 2012

Immune defense against S. epidermidis biofilms: components of the extracellular polymeric substance activate distinct bactericidal mechanisms of phagocytic cells

Eva Meyle; Gerald Brenner-Weiss; Ursula Obst; Birgit Prior; G. Maria Hänsch

Bacteria, organized in biofilms, are a common cause of relapsing or persistent infections and the ultimate cause of implant-associated osteomyelitis. Bacterial biofilms initiate a prominent local inflammatory response with infiltration of polymorphonuclear neutrophils (PMN), the main protagonists of the local innate host defense against bacteria. In our previous work we found that PMN recognize and adhere to biofilms, and that phagocytosis and degranulation of bactericidal substances, such as lactoferrin, were initiated. In contrast to the situation with planktonic bacteria, opsonization of biofilms with immunoglobulin and complement was not required for PMN activation, suggesting that biofilms contain signaling components for PMN. In the present study we identified in the bacteria-free extracellular substance of Staphylococcus epidermidis biofilms protein fractions that activated PMN in vitro.


Applied Microbiology and Biotechnology | 2014

Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae.

Johannes H. Kügler; Claudia Muhle-Goll; Boris Kühl; Axel Kraft; Raphael Heinzler; Frank Kirschhöfer; Marius Henkel; Victor Wray; Burkhard Luy; Gerald Brenner-Weiss; Siegmund Lang; Christoph Syldatk; Rudolf Hausmann

Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2′ and 3′ carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.

Collaboration


Dive into the Gerald Brenner-Weiss's collaboration.

Top Co-Authors

Avatar

Ursula Obst

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Kirschhöfer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Nusser

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Boris Kühl

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joerg Overhage

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Neidig

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Burkhard Luy

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Syldatk

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge