Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald D. Silverberg is active.

Publication


Featured researches published by Gerald D. Silverberg.


Cerebrospinal Fluid Research | 2008

Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

Conrad E. Johanson; John Duncan; Petra M. Klinge; Thomas Brinker; Edward G. Stopa; Gerald D. Silverberg

This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimers disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces.Outline1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion


Lancet Neurology | 2003

Alzheimer's disease, normal‐pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis

Gerald D. Silverberg; Martha Mayo; Thomas Saul; Edward Rubenstein; Dawn McGuire

There is evidence that production and turnover of CSF help to clear toxic molecules such as amyloid-beta peptide (Abeta) from the interstitial-fluid space of the brain to the bloodstream. Two changes in CSF circulatory physiology have been noted as part of ageing: first, a trend towards lower CSF production, hence a decrease in CSF turnover; and second, greater resistance to CSF outflow. Our hypothesis is that, all else being equal, the initially dominant physiological change determines whether CSF circulatory failure manifests as Alzheimers disease (AD) or as normal-pressure hydrocephalus (NPH). If CSF production failure predominates, AD develops. However, if resistance to CSF outflow predominates, NPH results. Once either disease process takes hold, the risk of the other disorder may rise. In AD, increased deposition of Abeta in the meninges leads to greater resistance to CSF outflow. In NPH, raised CSF pressure causes lower CSF production and less clearance of Abeta. The disorders may ultimately converge in vulnerable individuals, resulting in a hybrid as has been observed in several clinical series. We postulate a new nosological entity of CSF circulatory failure, with features of AD and NPH. NPH-AD may cover an important subset of patients who carry the diagnosis of either AD or NPH.


Acta Neuropathologica | 2006

RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease

John E. Donahue; Stephanie Flaherty; Conrad E. Johanson; John Duncan; Gerald D. Silverberg; Miles C. Miller; Rosemarie Tavares; Wentian Yang; Qian Wu; Edmond Sabo; Virginia Hovanesian; Edward G. Stopa

The receptor for advanced glycation end products (RAGE) is thought to be a primary transporter of β-amyloid across the blood–brain barrier (BBB) into the brain from the systemic circulation, while the low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of β-amyloid out of the brain. To determine whether there are Alzheimer’s disease (AD)-related changes in these BBB-associated β-amyloid receptors, we studied RAGE, LRP-1, and β-amyloid in human elderly control and AD hippocampi. In control hippocampi, there was robust RAGE immunoreactivity in neurons, whereas microvascular staining was barely detectable. LRP-1 staining, in contrast, was clearly evident within microvessels but only weakly stained neurons. In AD cases, neuronal RAGE immunoreactivity was significantly decreased. An unexpected finding was the strongly positive microvascular RAGE immunoreactivity. No evidence for colocalization of RAGE and β-amyloid was seen within either microvessels or senile plaques. A reversed pattern was evident for LRP-1 in AD. There was very strong staining for LRP-1 in neurons, with minimal microvascular staining. Unlike RAGE, colocalization of LRP-1 and β-amyloid was clearly present within senile plaques but not microvessels. Western blot analysis revealed a much higher concentration of RAGE protein in AD hippocampi as compared with controls. Concentration of LRP-1 was increased in AD hippocampi, likely secondary to its colocalization with senile plaques. These data confirm that AD is associated with changes in the relative distribution of RAGE and LRP-1 receptors in human hippocampus. They also suggest that the proportion of amyloid within the brains of AD patients that is derived from the systemic circulation may be significant.


The New England Journal of Medicine | 1990

Stereotactic Heavy-Charged-Particle Bragg-Peak Radiation for Intracranial Arteriovenous Malformations

Gary K. Steinberg; Jacob I. Fabrikant; Michael P. Marks; Richard P. Levy; Kenneth A. Frankel; Mark H. Phillips; Lawrence M. Shuer; Gerald D. Silverberg

BACKGROUND Heavy-charged-particle radiation has several advantages over protons and photons for the treatment of intracranial lesions; it has an improved physical distribution of the dose deep in tissue, a small angle of lateral scattering, and a sharp distal falloff of the dose. METHODS We present detailed clinical and radiologic follow-up in 86 patients with symptomatic but surgically inaccessible cerebral arteriovenous malformations that were treated with stereotactic helium-ion Bragg-peak radiation. The doses ranged from 8.8 to 34.6 Gy delivered to volumes of tissue of 0.3 to 70 cm3. RESULTS Two years after radiation treatment, the rate of complete obliteration of the lesions, as detected angiographically, was 94 percent for lesions smaller than 4 cm3, 75 percent for those of 4 to 25 cm3, and 39 percent for those larger than 25 cm3. After three years, the rates of obliteration were 100, 95, and 70 percent, respectively. Major neurologic complications occurred in 10 patients (12 percent), of whom 8 had permanent deficits. All these complications occurred in the initial stage of the protocol, before the maximal dose of radiation was reduced to 19.2 Gy. In addition, hemorrhage occurred in 10 patients from residual malformations between 4 and 34 months after treatment. Seizures and headaches were less severe in 63 percent of the 35 and 68 percent of the 40 patients, respectively, who had them initially. CONCLUSIONS Given the natural history of these inaccessible lesions and the high risks of surgery, we conclude that heavy-charged-particle radiation is an effective therapy for symptomatic, surgically inaccessible intracranial arteriovenous malformations. The current procedure has two disadvantages: a prolonged latency period before complete obliteration of the vascular lesion and a small risk of serious neurologic complications.


Cancer | 1978

Radiation-induced carotid artery disease

Gerald D. Silverberg; Richard H. Britt; Don R. Goffinet

Nine patients with atherosclerotic carotid artery disease associated with neck radiation were compared to 40 control patients. The data suggest that significant differences in age, incidence of coronary and peripheral vascular disease, elevated lipids and serum cholesterol, and the angiographic incidence of disseminated atherosclerosis justify the description of radiation‐induced carotid disease as a clinical entity. Elevated serum cholesterol and hyperlipidemia may contribute to the development of radiation‐induced vascular disease. Successful surgical reconstruction does not appear to be influenced by the prior radiotherapy, although periarterial fibrosis and increased difficulty in separating the plaques from the vascular media was encountered.


Neurology | 2001

The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type

Gerald D. Silverberg; Gary Heit; Stephen Huhn; Richard A. Jaffe; Steven D. Chang; Helen Bronte-Stewart; Edward Rubenstein; K. Possin; Thomas Saul

Objective: To evaluate the production rate of CSF in patients with differing disease states. Methods: The authors measured the production rate of CSF in three groups of patients: five patients with PD below age 60 (aged 51 ± 4 years, mean ± SD), nine with PD over age 60 (aged 69 ± 6 years, mean ± SD), and seven with dementia of the Alzheimer’s type (AD) (aged 72 ± 9 years, mean ± SD). This method, based on the Masserman technique, employs ventricular rather than a lumbar access to the CSF space. Furthermore, the volume of CSF removed during the procedure is only 3 mL rather than 10 mL. Results: These measurements indicate that the mean rate of CSF production in patients with PD under age 60 was 0.47 ± 0.13 mL/minute, in patients with PD aged 60 or older the mean rate was 0.40 ± 0.12 mL/minute, and in patients with AD the mean rate was 0.20 ± 0.06 mL/minute. Conclusion: These results indicate that the rate of CSF production in patients with PD is normal, and that the rate of CSF production in patients with AD is markedly reduced.


Archives of Clinical Neuropsychology | 1998

Differential Contributions of Cognitive and Motor Component Processes to Physical and Instrumental Activities of Daily Living in Parkinson’s Disease

Deborah A. Cahn; Edith V. Sullivan; Paula K. Shear; Adolf Pfefferbaum; Gary Heit; Gerald D. Silverberg

Patients with Parkinsons disease (PD) become dependent upon caregivers because motor and cognitive disabilities interfere with their ability to carry out activities of daily living (ADLs). However, PD patients display diverse motor and cognitive symptoms, and it is not yet known which are most responsible for ADL dysfunction. The purpose of this study was to identify the contributions that specific cognitive and motor functions make to ADLs. Executive functioning, in particular sequencing, was a significant independent predictor of instrumental ADLs whereas simple motor functioning was not. By contrast, simple motor functioning, but not executive functioning, was a significant independent predictor of physical ADLs. Dementia severity, as measured by the Dementia Rating Scale, was significantly correlated with instrumental but not physical ADLs. The identification of selective relationships between motor and cognitive functioning and ADLs may ultimately provide a model for evaluating the benefits and limitations of different treatments for PD.


Journal of Neuropathology and Experimental Neurology | 2010

Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging.

Gerald D. Silverberg; Arthur Messier; Miles C. Miller; Jason T. Machan; Samir Majmudar; Edward G. Stopa; John E. Donahue; Conrad E. Johanson

Reduced clearance of amyloid &bgr; peptides (A&bgr;) across the blood-brain barrier contributes to amyloid accumulation in Alzheimer disease. Amyloid &bgr; efflux transport is via the endothelial low-density lipoprotein receptor-related protein 1 (LRP-1) and P-glycoprotein (P-gp), whereas A&bgr; influx transport is via the receptor for advanced glycation end products. Because age is the major risk factor for developing Alzheimer disease, we measured LRP-1 and P-gp expression and associated transporter expression with A&bgr; accumulation in aging rats. Quantitative LRP-1 and P-gp microvessel expression was measured by immunohistochemistry (IHC); LRP-1 and P-gp expression were assessed in microvessel isolates by Western blotting. There was an age-dependent loss of capillary LRP-1 across all ages (3-36 months) by IHC (linear trend p = 0.0004) and between 3 and 20 months by Western blotting (linear trend p < 0.0001). There was a late (30-36 months) P-gp expression loss by IHC (p < 0.05) and Western blotting (p = 0.0112). Loss ofLRP-1 correlated with A&bgr;42 accumulation (p = 0.0121) and verynearly with A&bgr;40 (p = 0.0599) across all ages. Expression of LRP-1correlated negatively with the expression of receptor for advanced glycation end products (p < 0.0004). These data indicate that alterations in LRP-1 and P-gp expression seem to contribute progressively to A&bgr; accumulation in aging.


Brain Research | 2008

Hippocampal RAGE Immunoreactivity in Early and Advanced Alzheimer’s Disease

Miles C. Miller; Rosemarie Tavares; Conrad E. Johanson; Virginia Hovanesian; John E. Donahue; Liliana Gonzalez; Gerald D. Silverberg; Edward G. Stopa

Microvascular accumulation and neuronal overproduction of amyloid-beta peptide (Abeta) are pathologic features of Alzheimers disease (AD). In this study, we examined the receptor for advanced glycation endproducts (RAGE), a multi-ligand receptor found in both neurons and cerebral microvascular endothelia that binds Abeta. RAGE expression was assessed in aged controls (n = 6), patients with early AD-like pathology (n = 6), and severe, Braak V-VI AD (n = 6). Human hippocampi were stained with a specific polyclonal antibody directed against RAGE (Research Diagnostics, Flanders, NJ). Immunoreactivity was localized in both neurons and cerebral endothelial cells. Quantitative image-analyses were performed on grayscale images to assess the total surface area of endothelial RAGE immunoreaction product in cross sections of cerebral microvessels (5-20 microm). Confocal images were acquired for confirmation of RAGE immunoreactivity in both microvessels and neurons by coupling RAGE with CD-31 and neurofilament, respectively. A significant increase in endothelial RAGE immunoreactivity was found in severe Braak V-VI AD patients when compared to aged controls (p < 0.001), and when compared to patients with early AD pathology (p = 0.0125). In addition, a significant increase in endothelial RAGE immunoreactivity was witnessed when comparing aged controls having no reported AD pathology with patients having early AD-like pathology (p = 0.038). Our data suggest that microvascular RAGE levels increase in conjunction with the onset of AD, and continue to increase linearly as a function of AD pathologic severity (p < 0.0001).


Neurology | 2000

Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF

Philipp J. Kahle; Michael W. Jakowec; S.J. Teipel; Harald Hampel; Giselle M. Petzinger; D. A. Di Monte; Gerald D. Silverberg; H.-J. Möller; Jerome A. Yesavage; Jared R. Tinklenberg; E.M. Shooter; Greer M. Murphy

Objective: Comparative study of CSF levels of tau and AD7C-neuronal thread protein (NTP) in patients with AD and control subjects. Background: AD is characterized by neurofibrillary tangles composed of the abnormally hyperphosphorylated microtubule-associated protein tau. AD7C-NTP is a proposed AD marker expressed at early stages of neurofibrillary degeneration. Methods: Enzyme-linked immunosorbent assays specific for tau and AD7C-NTP. CSF samples were obtained from 35 demented patients (25 with antemortem clinical diagnosis of probable AD, 5 with neuropathologic diagnosis of definite AD, 5 with Lewy body pathology), 29 nondemented patients with PD, and 16 elderly healthy control subjects. Receiver operating characteristics (ROC) and multivariate discriminant analysis for AD versus controls. Correlational analysis of CSF tau and AD7C-NTP and of each marker with Mini-Mental State Examination (MMSE) scores was performed. Results: Levels of both tau and AD7C-NTP were significantly elevated in the AD patients compared with control subjects. ROC analysis showed that CSF tau distinguished between patients with AD and nondemented control subjects with 63% sensitivity and 89% specificity, AD7C-NTP with 70% sensitivity and 87% specificity. Combined evaluation of both markers with discriminant analysis raised the specificity to 93% at a 63% sensitivity level. Both markers positively correlated with each other within the AD group, but not among control subjects. CSF levels of AD7C-NTP, but not of tau, showed a small but significant inverse correlation ( r = −0.43) with MMSE scores of AD patients. Conclusions: CSF levels of tau and AD7C-NTP may be useful biomarkers for AD.

Collaboration


Dive into the Gerald D. Silverberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge