Gerald F. Joyce
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerald F. Joyce.
Nature | 2004
William M. Shih; Joel Quispe; Gerald F. Joyce
Molecular self-assembly offers a means of spontaneously forming complex and well-defined structures from simple components. The specific bonding between DNA base pairs has been used in this way to create DNA-based nanostructures and to direct the assembly of material on the subnanometre to micrometre scale. In principle, large-scale clonal production of suitable DNA sequences and the directed evolution of sequence lineages towards optimized behaviour can be realized through exponential DNA amplification by polymerases. But known examples of three-dimensional geometric DNA objects are not amenable to cloning because they contain topologies that prevent copying by polymerases. Here we report the design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation–renaturation procedure. We use cryo-electron microscopy to show that the DNA strands fold successfully, with 12 struts or edges joined at six four-way junctions to form hollow octahedra approximately 22 nanometres in diameter. Because the base-pair sequence of individual struts is not repeated in a given octahedron, each strut is uniquely addressable by the appropriate sequence-specific DNA binder.
Science | 2009
Tracey A. Lincoln; Gerald F. Joyce
An RNA enzyme that catalyzes the RNA-templated joining of RNA was converted to a format whereby two enzymes catalyze each others synthesis from a total of four oligonucleotide substrates. These cross-replicating RNA enzymes undergo self-sustained exponential amplification in the absence of proteins or other biological materials. Amplification occurs with a doubling time of about 1 hour and can be continued indefinitely. Populations of various cross-replicating enzymes were constructed and allowed to compete for a common pool of substrates, during which recombinant replicators arose and grew to dominate the population. These replicating RNA enzymes can serve as an experimental model of a genetic system. Many such model systems could be constructed, allowing different selective outcomes to be related to the underlying properties of the genetic system.
Chemistry & Biology | 1995
Ronald R. Breaker; Gerald F. Joyce
BACKGROUND Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approximately 10(-4) min-1 in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 degrees C. The Mg(2+)-dependent reaction is more difficult, with an uncatalyzed rate of approximately 10(-7) min-1 under comparable conditions. Mg(2+)-dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+)-dependent reaction. RESULTS We generated a population of > 10(13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg2+, Mn2+, Zn2+ or Pb2+. Examination of individual clones from the Mg2+ lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction. This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01 min-1. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. CONCLUSIONS We have generated a Mg(2+)-dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approximately 10(5)-fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.
Gene | 1989
Gerald F. Joyce
RNA, by virtue of its genotypic and phenotypic properties, is a suitable substrate for molecular evolution in the laboratory. We have developed techniques for the rapid amplification, mutation and selection of catalytic RNA. By combining these techniques in an iterative fashion, we are attempting to construct an RNA-based evolving system. Such a system could be used to explore the catalytic potential of RNA.
Current Opinion in Structural Biology | 1994
Gerald F. Joyce
The author reviews recent published reports of in vitro selection and evolution of nucleic acids. These nucleic acids will bind to a target ligand or catalyze a specific chemical reaction. The terms aptamers and systematic evolution of ligands by exponential enrichment (SELEX) are explained. The review focuses on protein binders, small molecule binders, and ribozymes obtained by directed evolution. The reference list identifies articles of special or outstanding interest.
Journal of Molecular Evolution | 1994
Ajoy C. Chakrabarti; Ronald R. Breaker; Gerald F. Joyce; David W. Deamer
Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Natasha Paul; Gerald F. Joyce
A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 min−1, whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 × 10−11 M⋅min−1. Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.
Nature Structural & Molecular Biology | 1999
Nowakowski J; Shim Pj; G.S. Prasad; C.D. Stout; Gerald F. Joyce
The structure of a large nucleic acid complex formed by the 10–23 DNA enzyme bound to an RNA substrate was determined by X–ray diffraction at 3.0 Å resolution. The 82–nucleotide complex contains two strands of DNA and two strands of RNA that form five double–helical domains. The spatial arrangement of these helices is maintained by two four–way junctions that exhibit extensive base–stacking interactions and sharp turns of the phosphodiester backbone stabilized by metal ions coordinated to nucleotides at these junctions. Although it is unlikely that the structure corresponds to the catalytically active conformation of the enzyme, it represents a novel nucleic acid fold with implications for the Holliday junction structure.
Science | 1995
Xiaochang Dai; A. De Mesmaeker; Gerald F. Joyce
A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.
Nature | 2002
John S. Reader; Gerald F. Joyce
RNA molecules are thought to have been prominent in the early history of life on Earth because of their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, owing to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unit. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyse the template-directed joining of two RNA molecules, one bearing a 5′-triphosphate and the other a 3′-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalysed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3′,5′-phosphodiester linkages.