Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald H. Lushington is active.

Publication


Featured researches published by Gerald H. Lushington.


Journal of Medical Genetics | 2005

Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism

Zohreh Talebizadeh; D Y Lam; Mariana F. Theodoro; Douglas C. Bittel; Gerald H. Lushington; Merlin G. Butler

Objective: To screen cDNA for NLGN3 and NLGN4 from lymphoblastoid cells from autistic subjects. Methods and results: 10 young autistic females and 30 non-autistic subjects were studied for alterations in two X linked genes, NLGN3 and NLGN4. A novel NLGN4 isoform lacking exon 4, which occurred de novo on the paternal allele, was identified in one of the autistic females. Monoallelic expression of NLGN4 was seen in this subject and in 11 of 14 informative autistic and non-autistic females using a single nucleotide polymorphism found at 3′ UTR. Additionally, the NLGN3 transcript was present in two isoforms (with and without exon 7) in nine of 10 autistic females and in 30 non-autistic subjects, including parents of the autistic female having only the complete transcript with exon 7, and from the whole brain of a control. The novel truncated NLGN3 product may have a regulatory role, as reported in other proteins (for example, vasopressin receptor) by attenuating the function of the full length isoform, resulting in a reduction of the mature protein. Three dimensional protein structures were characterised using comparative modelling, and significant changes were suggested in the protein cores for these two neuroligin isoforms. Conclusions: Splice variants may lead to potentially abnormal neuroligins in the causation of autism spectrum disorders.


Journal of Biological Chemistry | 2008

Deoxycholate Interacts with IpaD of Shigella flexneri in Inducing the Recruitment of IpaB to the Type III Secretion Apparatus Needle Tip

Kenneth F. Stensrud; Philip R. Adam; Cassandra D. La Mar; Andrew J. Olive; Gerald H. Lushington; Raghavi Sudharsan; Naomi L. Shelton; Richard S. Givens; Wendy L. Picking; William D. Picking

Type III secretion (TTS) is an essential virulence function for Shigella flexneri that delivers effector proteins that are responsible for bacterial invasion of intestinal epithelial cells. The Shigella TTS apparatus (TTSA) consists of a basal body that spans the bacterial inner and outer membranes and a needle exposed at the pathogen surface. At the distal end of the needle is a “tip complex” composed of invasion plasmid antigen D (IpaD). IpaD not only regulates TTS, but is required for the recruitment and stable association of the translocator protein IpaB at the TTSA needle tip in the presence of deoxycholate or other bile salts. This phenomenon is not accompanied by induction of TTS or the recruitment of IpaC to the Shigella surface. We now show that IpaD specifically binds fluorescein-labeled deoxycholate and, based on energy transfer measurements and docking simulations, this interaction appears to occur where the N-terminal domain of IpaD meets its central coiled-coil, a region that may also be involved in needle-tip interactions. TTS is initiated as a series of distinct steps and that small molecules present in the bacterial milieu are capable of inducing the first step of TSS through interactions with the needle tip protein IpaD. Furthermore, the amino acids proposed to be important for deoxycholate binding by IpaD appear to have significant roles in regulating tip complex composition and pathogen entry into host cells.


Journal of Biological Chemistry | 2007

Structure of the Human Lung Cytochrome P450 2A13

Brian D. Smith; Jason L. Sanders; Patrick Porubsky; Gerald H. Lushington; C. David Stout; Emily E. Scott

The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower Km values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35Å by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5Å for the Cα atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn297 is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.


Journal of Pharmacology and Experimental Therapeutics | 2008

Activation and Inhibition of Adenylyl Cyclase Isoforms by Forskolin Analogs

Cibele S. Pinto; Dan Papa; Melanie Hübner; Tung-Chung Mou; Gerald H. Lushington; Roland Seifert

Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.


Journal of Medicinal Chemistry | 2008

Comprehensive Study of Sansalvamide A Derivatives and their Structure–Activity Relationships against Drug-Resistant Colon Cancer Cell Lines

Katerina Otrubova; Gerald H. Lushington; David Vander Velde; Kathleen L. McGuire; Shelli R. McAlpine

We report an extensive structure-activity relationship (SAR) of 62 compounds active against two drug-resistant colon cancer cell lines. Our comprehensive evaluation of two generations of compounds utilizes SAR, NMR, and molecular modeling to evaluate the key 3D features of potent compounds. Of the seven most potent compounds reported here, five are second-generation, emphasizing our ability to incorporate potent features found in the first generation and utilize their structures to design potency into the second generation. These analogs share no structural homology to current colon cancer drugs, are cytotoxic at levels on par with existing drugs treating other cancers, and demonstrate selectivity for drug-resistant colon cancer cell lines over noncancerous cell lines. Thus, we have established sansalvamide A as an excellent lead for treating multiple drug-resistant colon cancers.


Bioorganic & Medicinal Chemistry | 2012

Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives.

Kok-Chuan Tiew; Dengfeng Dou; Tadahisa Teramoto; Huiguo Lai; Kevin R. Alliston; Gerald H. Lushington; Radhakrishnan Padmanabhan; William C. Groutas

Two click chemistry-derived focused libraries based on the benz[d]isothiazol-3(2H)-one scaffold were synthesized and screened against Dengue virus and West Nile virus NS2B-NS3 proteases. Several compounds (4l, 7j-n) displayed noteworthy inhibitory activity toward Dengue virus NS2B-NS3 protease in the absence and presence of added detergent. These compounds could potentially serve as a launching pad for a hit-to-lead optimization campaign.


ACS Combinatorial Science | 2008

Parallel Synthesis of a Multi-Substituted Benzo[b]furan Library

Chul-Hee Cho; Benjamin Neuenswander; Gerald H. Lushington; Richard C. Larock

The solution-phase parallel synthesis of a 121-member library of multi-substituted benzo[ b]furans is described. 2,3,5-Trisubstituted benzo[ b]furans have been prepared by the palladium-catalyzed substitution of 3-iodobenzofurans by Suzuki-Miyaura, carbonylative Suzuki, Sonogashira, Heck, and carboalkoxylation chemistry. The 3-iodobenzofurans are readily prepared in good to excellent yields by the palladium/copper-catalyzed cross-coupling of various o-iodoanisoles and terminal alkynes, followed by electrophilic cyclization with ICl.


ACS Combinatorial Science | 2008

Solution phase synthesis of a diverse library of highly substituted isoxazoles.

Jesse P. Waldo; Saurabh Mehta; Benjamin Neuenswander; Gerald H. Lushington; Richard C. Larock

The iodocyclization of O-methyloximes of 2-alkyn-1-ones affords 4-iodoisoxazoles, which undergo various palladium-catalyzed reactions to yield 3,4,5-trisubstituted isoxazoles. The palladium-catalyzed processes have been adapted to parallel synthesis utilizing commercially available boronic acid, acetylene, styrene, and amine sublibraries. Accordingly, a diverse 51-member library of 3,4,5-trisubstituted isoxazoles has been generated.


ACS Combinatorial Science | 2011

Solution-Phase Parallel Synthesis of a Diverse Library of 1,2-Dihydroisoquinolines

Nataliya A. Markina; Raffaella Mancuso; Benjamin Neuenswander; Gerald H. Lushington; Richard C. Larock

Synthesis of a 105 membered library of 1,2-dihydroisoquinolines is described. The 1,2-dihydroisoquinoline compounds have been prepared in good yields using a Lewis acid and organocatalyst-cocatalyzed multicomponent reaction of 2-(1-alkynyl)benzaldehydes, amines, and ketones. Various indoles have also been employed as pronucleophiles, furnishing 1-(3-indolyl)-1,2-dihydroisoquinolines. The halogen functionality present in some of the synthesized compounds allows for further diversification by palladium-catalyzed Suzuki−Miyaura and Sonogashira cross-couplings to give more diversified 1,2-dihydroisoquinoline derivatives.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases.

Huiguo Lai; Dengfeng Dou; Sridhar Aravapalli; Tadahisa Teramoto; Gerald H. Lushington; Tom Muinde Mwania; Kevin R. Alliston; David M. Eichhorn; Radhakrishnan Padmanabhan; William C. Groutas

1,2-Benzisothiazol-3(2H)-ones and 1,3,4-oxadiazoles individually have recently attracted considerable interest in drug discovery, including as antibacterial and antifungal agents. In this study, a series of functionalized 1,2-benzisothiazol-3(2H)-one-1,3,4-oxadiazole hybrid derivatives were synthesized and subsequently screened against Dengue and West Nile virus proteases. Ten out of twenty-four compounds showed greater than 50% inhibition against DENV2 and WNV proteases ([I] = 10 μM). The IC(50) values of compound 7n against DENV2 and WNV NS2B/NS3 were found to be 3.75 ± 0.06 and 4.22 ± 0.07 μM, respectively. The kinetics data support a competitive mode of inhibition by compound 7n. Molecular modeling studies were performed to delineate the putative binding mode of this series of compounds. This study reveals that the hybrid series arising from the linking of the two scaffolds provides a suitable platform for conducting a hit-to-lead optimization campaign via iterative structure-activity relationship studies, in vitro screening and X-ray crystallography.

Collaboration


Dive into the Gerald H. Lushington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Huan

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Seifert

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge