Gerald L. Murray
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerald L. Murray.
Infection and Immunity | 2009
Gerald L. Murray; Amporn Srikram; David E. Hoke; Elsio A. Wunder; Rebekah Henry; Miranda Lo; Kunkun Zhang; Rasana W. Sermswan; Albert I. Ko; Ben Adler
ABSTRACT Leptospira interrogans is responsible for leptospirosis, a zoonosis of worldwide distribution. LipL32 is the major outer membrane protein of pathogenic leptospires, accounting for up to 75% of total outer membrane protein. In recent times LipL32 has become the focus of intense study because of its surface location, dominance in the host immune response, and conservation among pathogenic species. In this study, an lipL32 mutant was constructed in L. interrogans using transposon mutagenesis. The lipL32 mutant had normal morphology and growth rate compared to the wild type and was equally adherent to extracellular matrix. Protein composition of the cell membranes was found to be largely unaffected by the loss of LipL32, with no obvious compensatory increase in other proteins. Microarray studies found no obvious stress response or upregulation of genes that may compensate for the loss of LipL32 but did suggest an association between LipL32 and the synthesis of heme and vitamin B12. When hamsters were inoculated by systemic and mucosal routes, the mutant caused acute severe disease manifestations that were indistinguishable from wild-type L. interrogans infection. In the rat model of chronic infection, the LipL32 mutant colonized the renal tubules as efficiently as the wild-type strain. In conclusion, this study showed that LipL32 does not play a role in either the acute or chronic models of infection. Considering the abundance and conservation of LipL32 among all pathogenic Leptospira spp. and its absence in saprophytic Leptospira, this finding is remarkable. The role of this protein in leptospiral biology and pathogenesis thus remains elusive.
Infection and Immunity | 2009
Gerald L. Murray; Viviane Morel; Gustavo M. Cerqueira; Julio Henrique Rosa Croda; Amporn Srikram; Rebekah Henry; Albert I. Ko; Odir A. Dellagostin; Dieter M. Bulach; Rasana W. Sermswan; Ben Adler; Mathieu Picardeau
ABSTRACT Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.
Microbes and Infection | 2009
Gerald L. Murray; Amporn Srikram; Rebekah Henry; Anucha Puapairoj; Rasana W. Sermswan; Ben Adler
We recently characterised the Leptospira interrogans heme oxygenase (hemO) gene and showed that HemO was required for growth with hemoglobin as the sole iron source. Here we investigated the role of HemO in pathogenesis. Hamsters inoculated with the hemO mutant showed 83% survival, compared with 33% for a control mutant (intergenic transposon insertion). Lung pathology was consistent with survival data, showing that HemO contributes significantly to pathogenesis and heme is a major in vivo iron source for L. interrogans. This is only the second defined, attenuated mutant in pathogenic Leptospira and the first to define function of the mutated gene.
Seminars in Respiratory and Critical Care Medicine | 2015
Yohei Doi; Gerald L. Murray; Anton Y. Peleg
The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks.
Microbes and Infection | 2008
Gerald L. Murray; Katherine M. Ellis; Miranda Lo; Ben Adler
The transposon TnSC189 was used to construct a mutant in the putative heme oxygenase gene hemO (LB186) of Leptospira interrogans. Unlike its parent strain, the mutant grew poorly in medium in which hemoglobin was the sole iron source. The putative heme oxygenase was over expressed in a His-tagged form, purified and was demonstrated to degrade heme in vitro. Unexpectedly, it was also found that the L. interrogans growth rate was significantly increased when medium was supplemented with hemoglobin, but only if ferrous iron sources were absent. This result was mirrored in the expression of some iron-related genes and suggests the presence of regulatory mechanisms detecting Fe2+ and hemoglobin. This is the first demonstration of a functional heme oxygenase from a spirochete.
Infection and Immunity | 2010
Miranda Lo; Gerald L. Murray; Chen Ai Khoo; David A. Haake; Richard L. Zuerner; Ben Adler
ABSTRACT Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.
Molecular Microbiology | 2010
Gerald L. Murray; Amporn Srikram; Rebekah Henry; Rudy A. Hartskeerl; Rasana W. Sermswan; Ben Adler
Leptospira interrogans is the causative agent of leptospirosis. Lipopolysaccharide (LPS) is the major outer membrane component of L. interrogans. It is the dominant antigen recognized during infection and the basis for serological classification. The structure of LPS and its role in pathogenesis are unknown. We describe two defined mutants of L. interrogans serovar Manilae with transposon insertions in the LPS locus. Mutant M895 was disrupted in gene la1641 encoding a protein with no known homologues. M1352 was disrupted in a gene unique to serovar Manilae also encoding a protein of unknown function. M895 produced truncated LPS while M1352 showed little or no change in LPS molecular mass. Both mutants showed altered agglutination titres against rabbit antiserum and against a panel of LPS‐specific monoclonal antibodies. The mutants were severely attenuated in virulence via the intraperitoneal route of infection, and were cleared from the host animal by 3 days after infection. M895 was also highly attenuated via the mucosal infection route. Resistance to complement in human serum was unaltered for both mutants. While complementation of mutants was not possible, the attenuation of two independently derived LPS mutants demonstrates for the first time that LPS plays an essential role leptospiral virulence.
Infection and Immunity | 2012
Azad Eshghi; Kristel Lourdault; Gerald L. Murray; Thanatchaporn Bartpho; Rasana W. Sermswan; Mathieu Picardeau; Ben Adler; Brendan Snarr; Richard L. Zuerner
ABSTRACT Pathogenic Leptospira spp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterized Leptospira interrogans catalase (KatE), the only annotated catalase found within pathogenic Leptospira species, by assessing its role in resistance to H2O2-induced oxidative stress and during infection in hamsters. Pathogenic L. interrogans bacteria had a 50-fold-higher survival rate under H2O2-induced oxidative stress than did saprophytic L. biflexa bacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenic Leptospira species. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation of katE in pathogenic Leptospira bacteria drastically diminished leptospiral viability in the presence of extracellular H2O2 and reduced virulence in an acute-infection model. Combined, these results suggest that L. interrogans KatE confers in vivo resistance to reactive oxygen species induced by the host innate immune response.
Veterinary Microbiology | 2013
Gerald L. Murray
Spirochetes of the genus Leptospira are responsible for the widespread, but neglected, zoonotic disease leptospirosis. In recent years there have been major advances in the understanding of leptospiral biology and the molecular basis of pathogenesis, yet the protein LipL32 remains an enigma of leptospiral biology. LipL32 (also known as Hap1) is an outer membrane, surface exposed lipoprotein and is the most abundant protein in the cell. LipL32 is found exclusively in pathogenic leptospires, is highly conserved, expressed in vivo and is highly immunogenic. These features make this protein of great interest from a pathogenesis and vaccine development point of view. Functional studies have shown that LipL32 binds to several extracellular matrix proteins, including laminin, multiple collagens and fibronectin, and the plasma proteins plasminogen and fibronectin. However, despite these indications for a role in adhesion to host tissues, a transposon mutant deficient for LipL32 had normal virulence in both the acute and colonisation models of infection and displayed normal adhesion to extracellular matrix in vitro. LipL32 stimulates a strong antibody response during natural infection of humans and a wide range of animal species. However, vaccination studies using LipL32 have yielded mixed results, despite the use of a wide range of vaccine vectors, adjuvants and protein modifications. Further work is clearly required to fully elucidate the role of this protein in the biology of Leptospira.
The Journal of Infectious Diseases | 2011
Amporn Srikram; Kunkun Zhang; Thanatchaporn Bartpho; Miranda Lo; David E. Hoke; Rasana W. Sermswan; Ben Adler; Gerald L. Murray
BACKGROUND Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars. METHODS We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated. RESULTS Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona. CONCLUSION This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis.