Gerald M. Alter
Wright State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerald M. Alter.
Biochimica et Biophysica Acta | 2001
Jeffrey M. Horn; Jason A. Lehman; Gerald M. Alter; Joel Horwitz; Julian Gomez-Cambronero
Utilizing the transphosphatidylation reaction catalyzed by phospholipase D (PLD) in the presence of a primary alcohol and the short-chain phospholipid PC8, we have characterized the enzyme from human neutrophils. A pH optimum of 7.8-8.0 was determined. PIP(2), EDTA/EGTA, and ATP were found to enhance basal PLD activity in vitro. Inhibitory elements were: oleate, Triton X-100, n-octyl-beta-glucopyranoside, divalent cations, GTPgammaS and H(2)O(2). The apparent K(m) for the butanol substrate was 0.1 mM and the V(max) was 6.0 nmol mg(-1) h(-1). Immunochemical analysis by anti-pan PLD antibodies revealed a neutrophil PLD of approximately 90 kDa and other bands recognized minimally by anti-PLD1 or anti-PLD2 antibodies. The 90-kDa protein is tyrosine-phosphorylated upon cell stimulation with GM-CSF and formyl-Met-Leu-Phe. Protein partial purification using column liquid chromatography was performed after cell subfractionation. Based on the enzymes regulatory and inhibitory factors, and its molecular weight, these data indicate an enzyme isoform that might be different from the mammalian PLD1/2 forms described earlier. The present results lay the foundation for further purification of this granulocyte PLD isoform.
Biochimica et Biophysica Acta | 2015
Ramya Ganesan; Madhu Mahankali; Gerald M. Alter; Julian Gomez-Cambronero
Phospholipase D (PLD) has been implicated in many physiological functions, such as chemotaxis and phagocytosis, as well as pathological functions, such as cancer cell invasion and metastasis. New inhibitors have been described that hamper the role of PLD in those pathologies but their site of action is not known. We have characterized the biochemical and biological behavior of the PLD1/2 dual inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), and the specific PLD2 inhibitor, N-[2-[1-(3-Fluorophenyl)-4-oxo-1,3,-8-triazaspiro[4.5]dec-8-yl]ethyl]-2-naphthalenecarboxamide (NFOT), and found that both FIPI and NFOT are mixed-kinetics inhibitors. Mutagenesis studies indicate that FIPI binds at S757 of PLD2, which is within the HKD2 catalytic site of the enzyme, whereas NFOT binds to PLD2 at two different sites, one being at S757/S648 and another to an allosteric site that is a natural site occupied by PIP2 (R210/R212). This latter site, along with F244/L245/L246, forms a hydrophobic pocket in the PH domain. The mechanism of action of FIPI is a direct effect on the catalytic site (and as such inhibits both PLD1 and PLD2 isoforms), whereas PLD2 affects both the catalytic site (orthosteric) and blocks PIP2 binding to PLD2 (allosteric), which negates the natural enhancing role of PIP2. Moreover, NFOT prevents cell invasion of cancer cells, which does not occur in cells overexpressing PLD2-F244A/L245A/L246A, or PLD2-R210A/R212A, or PLD2-S757/S648 mutants. This study provides new specific knowledge of enzyme regulation and mechanisms of activation and inhibition of PLD2 that are necessary to understand its role in cell signaling and to develop new inhibitors for cancer cell invasion and metastasis.
Journal of Biological Chemistry | 2012
Madhu Mahankali; Karen M. Henkels; Gerald M. Alter; Julian Gomez-Cambronero
Background: Phospholipase D2 harbors a newly described GEF activity. Results: The domains and residues responsible for the GEF activity of PLD2 and their physiological relevance in vivo have been identified. Conclusion: The catalytic site makeup provides a new mechanism of action. Significance: Significance of the PX domain in Rac2GEF activity of PLD2 is shown. We have demonstrated that phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for Rac2 and determined the PLD2 domains and amino acid site(s) responsible for its GEF activity. Experiments using GST fusion proteins or GST-free counterparts, purified proteins revealed that the PX domain is sufficient to exert GEF activity similar to full-length PLD2. The PLD2-GEF catalytic site is formed by a hydrophobic pocket of residues Phe-107, Phe-129, Leu-166, and Leu-173, all of which are in the PX domain. A nearby Arg-172 is also important in the overall activity. PX mutants altering any of those five amino acids fail to have GEF activity but still bind to Rac2, while their lipase activity was mostly unaffected. In addition to the PX domain, a region in the pleckstrin homology domain (Ile-306–Ala-310) aids in the PX-mediated GEF activity by providing a docking site to hold Rac2 in place during catalysis. We conclude that PLD2 is a unique GEF, with the PX being the major catalytic domain for its GEF activity, whereas the pleckstrin homology domain assists in the PX-mediated activity. The physiological relevance of this novel GEF in cell biology is demonstrated here in chemotaxis and phagocytosis of leukocytes, as the specific PX and PH mutants abolished cell function. Thus, this study reveals for the first time the catalytic site that forms the basis for the mechanism behind the GEF activity of PLD2.
Journal of NeuroVirology | 2002
Kelly Jo Huang; Gerald M. Alter; Dawn P. Wooley
The human immunodeficiency virus type 1 (HIV-1) enters the central nervous system (CNS) during the acute phase of infection and causes AIDS-related encephalitis and dementia in 30% of individuals. Previous studies show that HIV-1 sequences derived from the CNS of infected patients, including the sequence encoding reverse transcriptase (RT), are genetically distinct from sequences in other tissues. The hypothesis of the current study is that the RT sequence of HIV-1 is under positive selection within the CNS. Multiple alignments of non-CNS-derived and CNS-derived HIV-1 RT sequences were constructed using the ClustalW 1.8 program. The multiple alignments were analyzed with the Synonymous/Nonsynonymous Analysis Program. Codon positions 122–125, 135–149, and 166–212 of the CNS-derived RT sequences underwent a greater accumulation of nonsynonymous than synonymous substitutions, which was markedly different from the analysis results of the non-CNS-derived RT sequences. These residues are located in the finger and palm subdomains of the RT protein structure, which encodes the polymerase active site. The analysis of CNS-derived partial-length RT sequences that encompass these regions yielded similar results. A comparison of CNS-derived RT sequences to a non-CNS-derived RT consensus sequence revealed that a majority of the nonsynonymous substitutions resulted in a specific amino acid replacement. These results indicate that reverse transcriptase is under positive selection within the CNS. The amino acid replacements were visualized on a three-dimensional structure of HIV-1 RT using the Sybyl software suite. The protein structure analysis revealed that the amino acid replacements observed among the CNS-derived sequences occurred in areas of known structural and functional significance.
Protein Science | 2004
Jonathan E. Nuss; Gerald M. Alter
Replication protein A (RPA) is a heterotrimeric, multidomain, single‐stranded DNA‐binding protein. Using spectroscopic methods and methylene carbene‐based chemical modification methods, we have identified conformational intermediates in the denaturation pathway of RPA. Intrinsic protein fluorescence studies reveal unfolding profiles composed of multiple transitions, with midpoints at 1.5, 2.7, 4.2, and 5.3 M urea. CD profiles of RPA unfolding are characterized by a single transition. RPA is stabilized with respect to the CD‐monitored transition when bound to a dA15 oligonucleotide. However, oligonucleotide binding appears to exert little, if any, effect on the first fluorescence transition. Methylene carbene chemical modification, coupled with MALDI‐TOF mass spectrometry analysis, was also used to monitor unfolding of several specific RPA folds of the protein. The unfolding profiles of the individual structures are characterized by single transitions similar to the CD‐monitored transition. Each fold, however, unravels with different individual characteristics, suggesting significant autonomy. Based on results from chemical modification and spectroscopic analyses, we conclude the initial transition observed in fluorescence experiments represents a change in the juxtaposition of binding folds with little unraveling of the domain structures. The second transition represents the unfolding of the majority of fold structure, and the third transition observed by fluorescence correlates with the dissociation of the 70‐ and 32‐kD subunits.
Cellular Signalling | 2015
Madhu Mahankali; Gerald M. Alter; Julian Gomez-Cambronero
The phospholipase D (PLD) superfamily catalyzes the hydrolysis of cell membrane phospholipids generating the key intracellular lipid second messenger phosphatidic acid. However, there is not yet any resolved structure either from a crystallized protein or from NMR of any mammalian PLDs. We propose here a 3D model of the PLD2 by combining homology and ab initio 3 dimensional structural modeling methods, and docking conformation. This model is in agreement with the biochemical and physiological behavior of PLD in cells. For the lipase activity, the N- and C-terminal histidines of the HKD motifs (His 442/His 756) form a catalytic pocket, which accommodates phosphatidylcholine head group (but not phosphatidylethanolamine or phosphatidyl serine). The model explains the mechanism of the reaction catalysis, with nucleophilic attacks of His 442 and water, the latter aided by His 756. Further, the secondary structure regions superimposed with bacterial PLD crystal structure, which indicated an agreement with the model. It also explains protein-protein interactions, such as PLD2-Rac2 transmodulation (with a 1:2 stoichiometry) and PLD2 GEF activity both relevant for cell migration, as well as the existence of binding sites for phosphoinositides such as PIP2. These consist of R236/W238 and R557/W563 and a novel PIP2 binding site in the PH domain of PLD2, specifically R210/R212/W233. In each of these, the polar inositol ring is oriented towards the basic amino acid Arginine. Since tumor-aggravating properties have been found in mice overexpressing PLD2 enzyme, the 3D model of PLD2 will be also useful, to a large extent, in developing pharmaceuticals to modulate its in vivo activity.
Journal of Molecular Graphics & Modelling | 2014
Dhawal P. Oswal; Gerald M. Alter; S. Dean Rider; Heather A. Hostetler
Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of hepatic lipid metabolism which functions through ligand binding. Despite high amino acid sequence identity (>90%), marked differences in PPARα ligand binding, activation and gene regulation have been noted across species. Similar to previous observations with synthetic agonists, we have recently reported differences in ligand affinities and extent of activation between human PPARα (hPPARα) and mouse PPARα (mPPARα) in response to long chain fatty acids (LCFA). The present study was aimed to determine if structural alterations could account for these differences. The binding of PPARα to LCFA was examined through in silico molecular modeling and docking simulations. Modeling suggested that variances at amino acid position 272 are likely to be responsible for differences in saturated LCFA binding to hPPARα and mPPARα. To confirm these results experimentally, LCFA binding, circular dichroism, and transactivation studies were performed using a F272I mutant form of mPPARα. Experimental data correlated with in silico docking simulations, further confirming the importance of amino acid 272 in LCFA binding. Although the driving force for evolution of species differences at this position are yet unidentified, this study enhances our understanding of ligand-induced regulation by PPARα and demonstrates the efficacy of molecular modeling and docking simulations.
Genetics | 2016
Yong-jie Xu; Amanpreet Singh; Gerald M. Alter
Hydroxyurea (HU) has been used for the treatment of multiple diseases, such as cancer. The therapeutic effect is generally believed to be due to the suppression of ribonucleotide reductase (RNR), which slows DNA polymerase movement at replication forks and induces an S phase cell cycle arrest in proliferating cells. Although aberrant mitosis and DNA damage generated at collapsed forks are the likely causes of cell death in the mutants with defects in replication stress response, the mechanism underlying the cytotoxicity of HU in wild-type cells remains poorly understood. While screening for new fission yeast mutants that are sensitive to replication stress, we identified a novel mutation in the erg11 gene encoding the enzyme sterol-14α-demethylase in the ergosterol biosynthesis pathway that dramatically sensitizes the cells to chronic HU treatment. Surprisingly, HU mainly arrests the erg11 mutant cells in cytokinesis, not in S phase. Unlike the reversible S phase arrest in wild-type cells, the cytokinesis arrest induced by HU is relatively stable and occurs at low doses of the drug, which likely explains the remarkable sensitivity of the mutant to HU. We also show that the mutation causes sterol deficiency, which may predispose the cells to the cytokinesis arrest and lead to cell death. We hypothesize that in addition to the RNR, HU may have a secondary unknown target(s) inside cells. Identification of such a target(s) may greatly improve the chemotherapies that employ HU or help to expand the clinical usage of this drug for additional pathological conditions.
Biochemistry | 2009
Jonathan E. Nuss; Deacon J. Sweeney; Gerald M. Alter
Replication protein A (RPA) is a heterotrimeric, multidomain, single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination. Crystallographic and NMR studies on RPA protein fragments have provided structures for all domains; however, intact heterotrimeric RPA has resisted crystallization, and a complete protein structure has not yet been described. In this study, computational methods and experimental reactivity information (MRAN) were used to model the complete structure of RPA. To accomplish this, models of RPAs globular domains and its domain-linking regions were docked in various orders. We also determined rates of proteolytic cleavage and amino acid side chain chemical modifications in native, solution state RPA. These experimental data were used to select alternate modeling intermediates and final structural models, leading to a single model most consistent with our results. Using molecular dynamics simulations and multiple rounds of simulated annealing, we then relaxed this structural model and examined its flexibility. The family of resultant models is consistent with other, previously published, critical lines of evidence and with experimental reactivity data presented herein.
Biochimica et Biophysica Acta | 2000
Shruti Shaw; R. Ryan Geyer; Gerald M. Alter
Gel exclusion chromatographic studies demonstrate that cytosolic and mitochondrial malate dehydrogenases (cMDH and mMDH) dissociate into subunits in the presence of 0.1% of the non-ionic detergent Triton X-100 (TX-100). The presence of cofactor and catalytically competent cofactor-substrate pairs does not protect mMDH against this dissociation. In contrast, cMDH dimers resist dissociation in the presence of either addition. Since steady state kinetic studies indicate both enzymes are fully active in the presence of 0.1% TX-100, we conclude that quaternary structure is not a kinetically important feature of mMDH structure and cooperativity does not account for mMDH kinetic anomalies. In contrast, cooperativity is a reasonable explanation for cMDH kinetic properties even in the presence of 0.1% TX-100, since this enzymes subunits associate in the presence of active site ligands. The existence of fully active mMDH subunits raises the possibility that this species rather than the dimer may be a constituent of proposed multi-enzyme complexes of the mitochondrion. Preliminary chromatographic experiments involving gently disrupted mitochondria have found MDH activity in differently sized complexes, all with molecular weights larger than the mMDH dimer but smaller than complexes anticipated for multi-enzyme complexes involving other enzymes and the mMDH dimer.