Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald Schaefer is active.

Publication


Featured researches published by Gerald Schaefer.


Computerized Medical Imaging and Graphics | 2009

Lesion border detection in dermoscopy images

M. Emre Celebi; Hitoshi Iyatomi; Gerald Schaefer; William V. Stoecker

BACKGROUND Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. METHODS In this article, we present a systematic overview of the recent border detection methods in the literature paying particular attention to computational issues and evaluation aspects. CONCLUSION Common problems with the existing approaches include the acquisition, size, and diagnostic distribution of the test image set, the evaluation of the results, and the inadequate description of the employed methods. Border determination by dermatologists appears to depend upon higher-level knowledge, therefore it is likely that the incorporation of domain knowledge in automated methods will enable them to perform better, especially in sets of images with a variety of diagnoses.


Pattern Recognition | 2005

Illuminant and Device Invariant Colour Using Histogram Equalisation

Graham D. Finlayson; Steven D. Hordley; Gerald Schaefer; Gui Yun Tian

Colour can potentially provide useful information for a variety of computer vision tasks such as image segmentation, image retrieval, object recognition and tracking. However, for it to be helpful in practice, colour must relate directly to the intrinsic properties of the imaged objects and be independent of imaging conditions such as scene illumination and the imaging device. To this end many invariant colour representations have been proposed in the literature. Unfortunately, recent work (Second Workshop on Content-based Multimedia Indexing) has shown that none of them provides good enough practical performance. In this paper we propose a new colour invariant image representation based on an existing grey-scale image enhancement technique: histogram equalisation. We show that provided the rank ordering of sensor responses are preserved across a change in imaging conditions (lighting or device) a histogram equalisation of each channel of a colour image renders it invariant to these conditions. We set out theoretical conditions under which rank ordering of sensor responses is preserved and we present empirical evidence which demonstrates that rank ordering is maintained in practice for a wide range of illuminants and imaging devices. Finally, we apply the method to an image indexing application and show that the method out performs all previous invariant representations, giving close to perfect illumination invariance and very good performance across a change in device.


international conference of the ieee engineering in medicine and biology society | 2009

Rough Sets and Near Sets in Medical Imaging: A Review

Aboul Ella Hassanien; Ajith Abraham; James F. Peters; Gerald Schaefer; Christopher J. Henry

This paper presents a review of the current literature on rough-set- and near-set-based approaches to solving various problems in medical imaging such as medical image segmentation, object extraction, and image classification. Rough set frameworks hybridized with other computational intelligence technologies that include neural networks, particle swarm optimization, support vector machines, and fuzzy sets are also presented. In addition, a brief introduction to near sets and near images with an application to MRI images is given. Near sets offer a generalization of traditional rough set theory and a promising approach to solving the medical image correspondence problem as well as an approach to classifying perceptual objects by means of features in solving medical imaging problems. Other generalizations of rough sets such as neighborhood systems, shadowed sets, and tolerance spaces are also briefly considered in solving a variety of medical imaging problems. Challenges to be addressed and future directions of research are identified and an extensive bibliography is also included.


IEEE Journal of Selected Topics in Signal Processing | 2009

Anisotropic Mean Shift Based Fuzzy C-Means Segmentation of Dermoscopy Images

Huiyu Zhou; Gerald Schaefer; Abdul H. Sadka; M.E. Celebi

Image segmentation is an important task in analysing dermoscopy images as the extraction of the borders of skin lesions provides important cues for accurate diagnosis. One family of segmentation algorithms is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means has been shown to work well for clustering based segmentation, however due to its iterative nature this approach has excessive computational requirements. In this paper, we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time than previous techniques while providing good segmentation results. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centers, the entire strategy is capable of effectively detecting regions within an image. Experimental results on a large dataset of diverse dermoscopy images demonstrate that the presented method accurately and efficiently detects the borders of skin lesions.


Pattern Recognition | 2009

Thermography based breast cancer analysis using statistical features and fuzzy classification

Gerald Schaefer; Michal Zavisek; Tomoharu Nakashima

Medical thermography has proved to be useful in various medical applications including the detection of breast cancer where it is able to identify the local temperature increase caused by the high metabolic activity of cancer cells. It has been shown to be particularly well suited for picking up tumours in their early stages or tumours in dense tissue and outperforms other modalities such as mammography for these cases. In this paper we perform breast cancer analysis based on thermography, using a series of statistical features extracted from the thermograms quantifying the bilateral differences between left and right breast areas, coupled with a fuzzy rule-based classification system for diagnosis. Experimental results on a large dataset of nearly 150 cases confirm the efficacy of our approach that provides a classification accuracy of about 80%.


International Journal of Computer Vision | 2001

Solving for Colour Constancy using a Constrained Dichromatic Reflection Model

Graham D. Finlayson; Gerald Schaefer

Statistics-based colour constancy algorithms work well as long as there are many colours in a scene, they fail however when the encountering scenes comprise few surfaces. In contrast, physics-based algorithms, based on an understanding of physical processes such as highlights and interreflections, are theoretically able to solve for colour constancy even when there are as few as two surfaces in a scene. Unfortunately, physics-based theories rarely work outside the lab. In this paper we show that a combination of physical and statistical knowledge leads to a surprisingly simple and powerful colour constancy algorithm, one that also works well for images of natural scenes.From a physical standpoint we observe that given the dichromatic model of image formation the colour signals coming from a single uniformly-coloured surface are mapped to a line in chromaticity space. One component of the line is defined by the colour of the illuminant (i.e. specular highlights) and the other is due to its matte, or Lambertian, reflectance. We then make the statistical observation that the chromaticities of common light sources all follow closely the Planckian locus of black-body radiators. It follows that by intersecting the dichromatic line with the Planckian locus we can estimate the chromaticity of the illumination. We can solve for colour constancy even when there is a single surface in the scene. When there are many surfaces in a scene the individual estimates from each surface are averaged together to improve accuracy.In a set of experiments on real images we show our approach delivers very good colour constancy. Moreover, performance is significantly better than previous dichromatic algorithms.


Applied Soft Computing | 2014

Cost-sensitive decision tree ensembles for effective imbalanced classification

Bartosz Krawczyk; Michał Woniak; Gerald Schaefer

Real-life datasets are often imbalanced, that is, there are significantly more training samples available for some classes than for others, and consequently the conventional aim of reducing overall classification accuracy is not appropriate when dealing with such problems. Various approaches have been introduced in the literature to deal with imbalanced datasets, and are typically based on oversampling, undersampling or cost-sensitive classification. In this paper, we introduce an effective ensemble of cost-sensitive decision trees for imbalanced classification. Base classifiers are constructed according to a given cost matrix, but are trained on random feature subspaces to ensure sufficient diversity of the ensemble members. We employ an evolutionary algorithm for simultaneous classifier selection and assignment of committee member weights for the fusion process. Our proposed algorithm is evaluated on a variety of benchmark datasets, and is confirmed to lead to improved recognition of the minority class, to be capable of outperforming other state-of-the-art algorithms, and hence to represent a useful and effective approach for dealing with imbalanced datasets.


Multimedia Tools and Applications | 2010

A next generation browsing environment for large image repositories

Gerald Schaefer

Next generation environments will change the way people work and live as they will provide new advances in areas ranging from remote work and education, e-commerce, gaming to information-on-demand. In many of these applications intelligent interpretation of multimedia data such as image, video and audio resources is necessary. In this paper we present an effective approach to handling image repositories providing the user with an intuitive interface of visualising and browsing large collections of pictures. Based on the idea of similarity-based organisation of images where images that are visually similar are located close to each other in visualisation space, images are projected onto a sphere with which the user can interact. Rotating the sphere reveals images of different colours while tilting operations focus on brighter or darker images. Large image collections are handled through a hierarchical approach that brings up similar, previously hidden, images when zooming in on an area. Furthermore, the way images are organised can be interactively changed by the user. Our next generation browsing environment has been successfully tested on a large database of several thousand images.


Skin Research and Technology | 2013

Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods

M. Emre Celebi; Quan Wen; Sae Hwang; Hitoshi Iyatomi; Gerald Schaefer

Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. In many cases, the lesion can be roughly separated from the background skin using a thresholding method applied to the blue channel. However, no single thresholding method appears to be robust enough to successfully handle the wide variety of dermoscopy images encountered in clinical practice.


Computerized Medical Imaging and Graphics | 2011

Gradient vector flow with mean shift for skin lesion segmentation

Huiyu Zhou; Gerald Schaefer; M. Emre Celebi; Faquan Lin; Tangwei Liu

Image segmentation is an important task in the analysis of dermoscopy images since the extraction of skin lesion borders provides important cues for accurate diagnosis. In recent years, gradient vector flow based algorithms have demonstrated their merits in image segmentation. However, due to the compromise of internal and external energy forces within the partial differential equation these methods commonly lead to under- or over-segmentation problems. In this paper, we introduce a new mean shift based gradient vector flow (GVF) algorithm that drives the internal/external energies towards the correct direction. The proposed segmentation method incorporates a mean shift operation within the standard GVF cost function. Theoretical analysis proves that the proposed algorithm converges rapidly, while experimental results on a large set of diverse dermoscopy images demonstrate that the presented method accurately determines skin lesion borders in dermoscopy images.

Collaboration


Dive into the Gerald Schaefer's collaboration.

Top Co-Authors

Avatar

M. Emre Celebi

University of Central Arkansas

View shared research outputs
Top Co-Authors

Avatar

Tomoharu Nakashima

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiyu Zhou

Brunel University London

View shared research outputs
Top Co-Authors

Avatar

Iakov Korovin

Southern Federal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bartosz Krawczyk

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge