Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerald Voss is active.

Publication


Featured researches published by Gerald Voss.


Journal of Virology | 2005

Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies

Ming Li; Feng Gao; John R. Mascola; Leonidas Stamatatos; Victoria R. Polonis; Marguerite Koutsoukos; Gerald Voss; Paul A. Goepfert; Peter B. Gilbert; Kelli M. Greene; Miroslawa Bilska; Denise L. Kothe; Jesus F. Salazar-Gonzalez; Xiping Wei; Julie M. Decker; Beatrice H. Hahn; David C. Montefiori

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.


The Lancet | 2001

Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial

Kalifa Bojang; Paul Milligan; Margaret Pinder; Laurence Vigneron; Ali Alloueche; Kent E. Kester; W. Ripley Ballou; David J. Conway; William H. H. Reece; Philip Gothard; Lawrence K. Yamuah; Martine Delchambre; Gerald Voss; Brian Greenwood; Adrian V. S. Hill; Keith P. W. J. McAdam; Nadia Tornieporth; Joe Cohen; Tom Doherty

BACKGROUND RTS,S/AS02 is a pre-erythrocytic malaria vaccine based on the circumsporozoite surface protein of Plasmodium falciparum fused to HBsAg, incorporating a new adjuvant (AS02). We did a randomised trial of the efficacy of RTS,S/AS02 against natural P. falciparum infection in semi-immune adult men in The Gambia. METHODS 306 men aged 18-45 years were randomly assigned three doses of either RTS,S/AS02 or rabies vaccine (control). Volunteers were given sulfadoxine/pyrimethamine 2 weeks before dose 3, and kept under surveillance throughout the malaria transmission season. Blood smears were collected once a week and whenever a volunteer developed symptoms compatible with malaria. The primary endpoint was time to first infection with P. falciparum. Analysis was per protocol. FINDINGS 250 men (131 in the RTS,S/AS02 group and 119 in the control group) received three doses of vaccine and were followed up for 15 weeks. RTS,S/AS02 was safe and well tolerated. P. falciparum infections occurred significantly earlier in the control group than the RTS,S/AS02 group (Wilcoxons test p=0.018). Vaccine efficacy, adjusted for confounders, was 34% (95% CI 8.0-53, p=0.014). Protection seemed to wane: estimated efficacy during the first 9 weeks of follow-up was 71% (46-85), but decreased to 0% (-52 to 34) in the last 6 weeks. Vaccination induced strong antibody responses to circumsporozoite protein and strong T-cell responses. Protection was not limited to the NF54 parasite genotype from which the vaccine was derived. 158 men received a fourth dose the next year and were followed up for 9 weeks; during this time, vaccine efficacy was 47% (4-71, p=0.037). INTERPRETATION RTS,S/AS02 is safe, immunogenic, and is the first pre-erythrocytic vaccine to show significant protection against natural P. falciparum infection.


The Journal of Infectious Diseases | 2001

Efficacy of Recombinant Circumsporozoite Protein Vaccine Regimens against Experimental Plasmodium falciparum Malaria

Kent E. Kester; Denise A. McKinney; Nadia Tornieporth; Christian F. Ockenhouse; D. Gray Heppner; Ted Hall; Urszula Krzych; Martine Delchambre; Gerald Voss; Megan Dowler; Jolie Palensky; Janet Wittes; Joe Cohen; W. Ripley Ballou

After initial successful evaluation of the circumsporozoite-based vaccine RTS,S/SBAS2, developed by SmithKline Beecham Biologicals with the Walter Reed Army Institute of Research, protective efficacy of several regimens against Plasmodium falciparum challenge was determined. A controlled phase 1/2a study evaluated 1 or 2 standard doses of RTS,S/SBAS2 in 2 groups whose members received open-label therapy and 3 immunizations in blinded groups who received standard, one-half, or one-fifth doses. RTS,S/SBAS2 was safe and immunogenic in all groups. Of the 41 vaccinees and 23 control subjects who underwent sporozoite challenge, malaria developed in 7 of 10 who received 1 dose, in 7 of 14 who received 2 doses, in 3 of 6 who received 3 standard doses, in 3 of 7 who received 3 one-half doses, in 3 of 4 who received 3 one-fifth doses, and in 22 of 23 control subjects. Overall protective efficacy of RTS,S/SBAS2 was 41% (95% confidence interval, 22%-56%; P=.0006). This and previous studies have shown that 2 or 3 doses of RTS,S/SBAS2 protect against challenge with P. falciparum sporozoites.


Journal of Immunology | 2003

Protective Immunity Induced with Malaria Vaccine, RTS,S, Is Linked to Plasmodium falciparum Circumsporozoite Protein-Specific CD4+ and CD8+ T Cells Producing IFN-γ

Peifang Sun; Robert Schwenk; Katherine White; José A. Stoute; Joe Cohen; W. Ripley Ballou; Gerald Voss; Kent E. Kester; D. Gray Heppner; Urszula Krzych

The Plasmodium falciparum circumsporozoite (CS) protein-based pre-erythrocytic stage vaccine, RTS,S, induces a high level of protection against experimental sporozoite challenge. The immune mechanisms that constitute protection are only partially understood, but are presumed to rely on Abs and T cell responses. In the present study we compared CS protein peptide-recalled IFN-γ reactivity of pre- and RTS,S-immune lymphocytes from 20 subjects vaccinated with RTS,S. We observed elevated IFN-γ in subjects protected by RTS,S; moreover, both CD4+ and CD8+ T cells produced IFN-γ in response to CS protein peptides. Significantly, protracted protection, albeit observed only in two of seven subjects, was associated with sustained IFN-γ response. This is the first study demonstrating correlation in a controlled Plasmodia sporozoite challenge study between protection induced by a recombinant malaria vaccine and Ag-specific T cell responses. Field-based malaria vaccine studies are in progress to validate the establishment of this cellular response as a possible in vitro correlate of protective immunity to exo-erythrocytic stage malaria vaccines.


The Journal of Infectious Diseases | 1999

Potent Induction of Focused Th1-Type Cellular and Humoral Immune Responses by RTS,S/SBAS2, a Recombinant Plasmodium falciparum Malaria Vaccine

Ajit Lalvani; Phillipe Moris; Gerald Voss; Ansar A. Pathan; Kent E. Kester; Roger Brookes; Edwin A. M. Lee; Marguerite Koutsoukos; Magdalena Plebanski; Martine Delchambre; Katie L. Flanagan; Cecile Carton; Moncef Slaoui; Christian Van Hoecke; W. Ripley Ballou; Adrian V. S. Hill; Joe Cohen

The RTS,S/SBAS2 vaccine confers sterile protection against Plasmodium falciparum sporozoite challenge. The mechanisms underlying this are of great interest, yet little is known about the immune effector mechanisms induced by this vaccine. The immune responses induced by RTS,S/SBAS2 were characterized in 10 malaria-naive volunteers. Several epitopes in the circumsporozoite protein (CSP) were identified as targets of cultured interferon (IFN)-gamma-secreting CD4+ T cells. RTS,S-specific IFN-gamma-secreting effector T cells were induced in 8 subjects; this ex vivo response mapped to a single peptide in Th2R. CSP-specific CD8+ cytotoxic T lymphocytes were not detected. RTS, S-specific IFN-gamma production was universal, whereas interleukin-4 and -5 production was rare. RTS,S-specific lymphoproliferative responses and antibodies to CSP were strongly induced in all volunteers. Responses waned with time but were boostable. Thus, RTS, S/SBAS2 is a potent inducer of Th1-type cellular and humoral immunity. These results highlight possible immune mechanisms of protection and have important implications for vaccine design in general.


Journal of Virology | 2006

Characterization of Antibody Responses Elicited by Human Immunodeficiency Virus Type 1 Primary Isolate Trimeric and Monomeric Envelope Glycoproteins in Selected Adjuvants

Yuxing Li; Krisha Svehla; N. L. Mathy; Gerald Voss; John R. Mascola; Richard T. Wyatt

ABSTRACT We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.


Journal of Experimental Medicine | 2011

Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated

Hua-Xin Liao; Xi Chen; Supriya Munshaw; Ruijun Zhang; Dawn J. Marshall; Nathan Vandergrift; John F. Whitesides; Xiaozhi Lu; Jae-Sung Yu; Kwan-Ki Hwang; Feng Gao; Martin Markowitz; Sonya L. Heath; Katharine J. Bar; Paul A. Goepfert; David C. Montefiori; George C. Shaw; S. Munir Alam; David M. Margolis; Thomas N. Denny; Scott D. Boyd; Eleanor Marshal; Michael Egholm; Birgitte B. Simen; Bozena Hanczaruk; Andrew Fire; Gerald Voss; Garnett Kelsoe; Georgia D. Tomaras; M. Anthony Moody

Many HIV-1 envelope-reactive antibodies shortly after HIV-1 transmission may arise from crow-reactive memory B cells previously stimulated by non-HIV-1 host or microbial antigens


Science | 2015

Protective Efficacy of Adenovirus/Protein Vaccines Against SIV Challenges in Rhesus Monkeys

Dan H. Barouch; Galit Alter; Thomas A. Broge; Caitlyn Linde; Margaret E. Ackerman; Eric P. Brown; Erica N. Borducchi; Kaitlin M. Smith; Joseph P. Nkolola; Jinyan Liu; Jennifer Shields; Lily Parenteau; James B. Whitney; Peter Abbink; David Ng’ang’a; Michael S. Seaman; Christy L. Lavine; James R. Perry; Wenjun Li; Arnaud D. Colantonio; Mark G. Lewis; Bing Chen; Holger Wenschuh; Ulf Reimer; Michael Piatak; Jeffrey D. Lifson; Scott A. Handley; Herbert W. Virgin; Marguerite Koutsoukos; Clarisse Lorin

To defeat SIV, add a protein boost Despite 30 years of effort, no HIV-1 vaccine exists. Barouch et al. evaluated one promising strategy in rhesus macaques, a preclinical model commonly used to test potential HIV-1 vaccine candidates. They immunized monkeys with adenovirus-36 vectors engineered to express SIV (simian immunodeficiency virus) genes and then boosted them with a recombinant gp120 envelope glycoprotein (Env) from SIV. This regimen afforded greater protection than a strategy that instead used a viral vector–based boost. A parallel trial using a SHIV (simian/human immunodeficiency virus)–based vaccine and challenge model produced similar results. Whether this particular approach will be equally successful in humans remains to be tested. Science, this issue p. 320 A viral vector–recombinant envelope glycoprotein–based HIV-1 vaccine strategy protected 50% of monkeys from infection. Preclinical studies of viral vector–based HIV-1 vaccine candidates have previously shown partial protection against neutralization-resistant virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by purified envelope (Env) glycoprotein boosting. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env, Gag, and Pol and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repeated, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repeated, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of neutralization-resistant virus challenges in rhesus monkeys.


PLOS Pathogens | 2009

Structure-Based Stabilization of HIV-1 gp120 Enhances Humoral Immune Responses to the Induced Co-Receptor Binding Site

Barna Dey; Krisha Svehla; Ling Xu; Dianne Wycuff; Tongqing Zhou; Gerald Voss; Adhuna Phogat; Bimal K. Chakrabarti; Yuxing Li; George M. Shaw; Peter D. Kwong; Gary J. Nabel; John R. Mascola; Richard T. Wyatt

The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.


Journal of Virology | 2004

Passive Immunotherapy in Simian Immunodeficiency Virus-Infected Macaques Accelerates the Development of Neutralizing Antibodies

Nancy L. Haigwood; David C. Montefiori; William F. Sutton; Janela McClure; Andrew Watson; Gerald Voss; Vanessa M. Hirsch; Barbra A. Richardson; Norman L. Letvin; Shiu-Lok Hu; Philip R. Johnson

ABSTRACT Passively transferred neutralizing antibodies can block lentivirus infection, but their role in postexposure prophylaxis is poorly understood. In this nonhuman-primate study, the effects of short-term antibody therapy on 5-year disease progression, virus load, and host immunity were explored. We reported previously that postinfection passive treatment with polyclonal immune globulin with high neutralizing titers against SIVsmE660 (SIVIG) significantly improved the 67-week health of SIVsmE660-infected Macaca mulatta macaques. Four of six treated macaques maintained low or undetectable levels of virus in plasma, compared with one of ten controls, while two rapid progressors controlled viremia only as long as the SIVIG was present. SIVIG treatment delayed the de novo production of envelope (Env)-specific antibodies by 8 weeks (13). We show here that differences in disease progression were also significant at 5 years postinfection, excluding rapid progressors (P = 0.05). Macaques that maintained ≤103 virus particles per ml of plasma and ≤30 infectious virus particles per 106 mononuclear cells from peripheral blood and lymph nodes had delayed disease onset. All macaques that survived beyond 18 months had measurable Gag-specific CD8+ cytotoxic T cells, regardless of treatment. Humoral immunity in survivors beyond 20 weeks was strikingly different in the SIVIG and control groups. Despite a delay in Env-specific binding antibodies, de novo production of neutralizing antibodies was significantly accelerated in SIVIG-treated macaques. Titers of de novo neutralizing antibodies at week 12 were comparable to levels achieved in controls only by week 32 or later. Acceleration of de novo simian immunodeficiency virus immunity in the presence of passively transferred neutralizing antibodies is a novel finding with implications for postexposure prophylaxis and vaccines.

Collaboration


Dive into the Gerald Voss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kent E. Kester

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Gray Heppner

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge