Gerald Zapata-Torres
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerald Zapata-Torres.
Biochemical Pharmacology | 1997
Ma.Cecilia Scorza; Cecilia Carrau; Rodolfo Silveira; Gerald Zapata-Torres; Bruce K. Cassels; Miguel Reyes-Parada
The monoamine oxidase (MAO) inhibitory properties of a series of amphetamine derivatives with different substituents at or around the para position of the aromatic ring were evaluated. In in vitro studies in which a crude rat brain mitochondrial suspension was used as the source of MAO, several compounds showed a strong (IC50 in the submicromolar range), selective, reversible, time-independent, and concentration-related inhibition of MAO-A. After i.p. injection, the compounds induced an increase of serotonin and a decrease of 5-hydroxyindoleacetic acid in the raphe nuclei and hippocampus, confirming the in vitro results. The analysis of structure-activity relationships indicates that: molecules with amphetamine-like structure and different substitutions on the aromatic ring are potentially MAO-A inhibitors; substituents at different positions of the aromatic ring modify the potency but have little influence on the selectivity; substituents at the para position such as amino, alkoxyl, halogens, or alkylthio produce a significant increase in the activity; the para-substituent must be an electron donor; bulky groups next to the para substituent lead to a decrease in the activity; substituents located at positions more distant on the aromatic ring have less influence and, even when the substituent is a halogen (Cl, Br), an increase in the activity of the compound is obtained. Finally, the MAO-A inhibitory properties of some of the compounds evaluated are discussed in relation to: (a) potential antidepressant activity, and (b) their reported hallucinogenic, neurotoxic, or anxiolytic effects.
Bioorganic & Medicinal Chemistry | 2008
Carolina Jullian; Javier Morales-Montecinos; Gerald Zapata-Torres; Benjamín Aguilera; Jorge Rodríguez; Vicente J. Arán; Claudio Olea-Azar
The slightly water-soluble 5-nitroindazole derivative (5-NI) and its inclusion with either beta-cyclodextrin (betaCD) or Heptakis (2,6-di-O-methyl)-beta-cyclodextrin (DMbetaCD) were investigated. The stoichiometric ratios and stability constants describing the extent of formation of the complexes were determined by phase-solubility measurements obtaining type-A(L) diagrams in both cases. According to the continuous variation method (Jobs plot) a 1:1 stoichiometry has been proposed for the complexes. Also electrochemical studies were carried out on both CDs complexes, where the observed change in the E(PC) value for DMbetaCD indicated a lower feasibility of the nitro group reduction. The detailed spatial configuration is proposed based on two-dimensional NMR methods. These results are further interpreted using molecular modeling studies. The latter results are in good agreement with the experimental data.
Molecular Pharmacology | 2010
Patricio Iturriaga-Vásquez; Analisa Carbone; Olimpo García-Beltrán; Phil D. Livingstone; Philip C. Biggin; Bruce K. Cassels; Susan Wonnacott; Gerald Zapata-Torres; Isabel Bermudez
The Erythrina alkaloids erysodine and dihydro-β-erythroidine (DHβE) are potent and selective competitive inhibitors of α4β2 nicotinic acetylcholine receptors (nAChRs), but little is known about the molecular determinants of the sensitivity of this receptor subtype to inhibition by this class of antagonists. We addressed this issue by examining the effects of DHβE and a range of aromatic Erythrina alkaloids on [3H]cytisine binding and receptor function in conjunction with homology models of the α4β2 nAChR, mutagenesis, and functional assays. The lactone group of DHβE and a hydroxyl group at position C-16 in aromatic Erythrina alkaloids were identified as major determinants of potency, which was decreased when the conserved residue Tyr126 in loop A of the α4 subunit was substituted by alanine. Sensitivity to inhibition was also decreased by substituting the conserved aromatic residues α4Trp182 (loop B), α4Tyr230 (loop C), and β2Trp82 (loop D) and the nonconserved β2Thr84; however, only α4Trp182 was predicted to contact bound antagonist, suggesting α4Tyr230, β2Trp82, and β2Thr84 contribute allosterically to the closed state elicited by bound antagonist. In addition, homology modeling predicted strong ionic interactions between the ammonium center of the Erythrina alkaloids and β2Asp196, leading to the uncapping of loop C. Consistent with this, β2D196A abolished sensitivity to inhibition by DHβE or erysodine but not by epierythratidine, which is not predicted to form ionic bonds with β2Asp196. This residue is not conserved in subunits that comprise nAChRs with low sensitivity to inhibition by DHβE or erysodine, which highlights β2Asp196 as a major determinant of the receptor selectivity of Erythrina alkaloids.
Journal of Chemical Information and Modeling | 2015
Gerald Zapata-Torres; Angélica Fierro; German Barriga-González; J. Cristian Salgado; Cristian Celis-Barros
Two of the possible catalytic mechanisms for neurotransmitter oxidative deamination by monoamine oxidase B (MAO B), namely, polar nucleophilic and hydride transfer, were addressed in order to comprehend the nature of their rate-determining step. The Quantum Chemical Cluster Approach was used to obtain transition states of MAO B complexed with phenylethylamine (PEA), benzylamine (BA), and p-nitrobenzylamine (NBA). The choice of these amines relies on their importance to address MAO B catalytic mechanisms so as to help us to answer questions such as why BA is a better substrate than NBA or how para-substitution affects substrates reactivity. Transition states were later validated by comparison with the experimental free energy barriers. From a theoretical point of view, and according to the our reported transition states, their calculated barriers and structural and orbital differences obtained by us among these compounds, we propose that good substrates such as BA and PEA might follow the hydride transfer pathway while poor substrates such as NBA prefer the polar nucleophilic mechanism, which might suggest that MAO B can act by both mechanisms. The low free energy barriers for BA and PEA reflect the preference that MAO B has for hydride transfer over the polar nucleophilic mechanism when catalyzing the oxidative deamination of neurotransmitters.
Bioorganic & Medicinal Chemistry Letters | 2009
Edwin Pérez; Bruce K. Cassels; Gerald Zapata-Torres
This study reports the comparative molecular modeling, docking and dynamic simulations of human alpha9alpha10 nicotinic acetylcholine receptors complexed with acetylcholine, nicotine and alpha-conotoxin RgIA, using as templates the crystal structures of Aplysia californica and Lymnaea stagnalis acetylcholine binding proteins. The molecular dynamics simulations showed that Arg112 in the complementary alpha10(-) subunit, is a determinant for recognition in the site that binds small ligands. However, Glu195 in the principal alpha9(+), and Asp114 in the complementary alpha10(-) subunit, might confer the potency and selectivity to alpha-conotoxin RgIA when interacting with Arg7 and Arg9 of this ligand.
Journal of Cellular and Molecular Medicine | 2011
Sergio Arancibia; Dixan A. Benitez; Lucía E. Núñez; Christine M. Jewell; Patricia Langjahr; Enzo Candia; Gerald Zapata-Torres; John A. Cidlowski; María-Julieta González; Marcela A. Hermoso
Airway inflammation is a common condition where glucocorticoids (GC) are a well‐established therapy. It has been demonstrated that GC stimulate components of innate immunity. Specifically, GC up‐regulate TLR2 expression and activation upon inflammatory stimuli; however, little is known about the signalling involved in this process. To determine the mechanism by which dexamethasone modulates TLR2‐induced cytokine production this signalling pathway was monitored in a lung epithelial cell line exposed to the TLR2 synthetic agonist, Pam3‐Cys‐Ser‐Lys4. These experiments demonstrate that phosphatidylinositol 3‐kinase (PI3K) is critical for the TLR2 downstream effects of GC. Cells expressing a PI3K mutant (p85‐dominant negative, DN; p85 Δ478–511) and exposed to Pam3‐Cys‐Ser‐Lys4 in the presence or absence of dexamethasone, showed enhanced tumour necrosis factor (TNF)α expression while AP‐1 and NF‐κB transcriptional activity were repressed. We provide experimental evidence that PI3K physically interacts with the glucocorticoid receptor (GR) through two putative PI3K recruitment consensus YxxM binding motifs in the GR, suggesting that some functions regulated by this receptor might occur through kinase interaction. Mutations of two tyrosine residues in the GR, 598 and 663, to phenylalanine significantly reduced interaction with PI3K and the GC effects on TLR2‐induced TNF‐α expression. However, these mutations did not alter GR transcriptional activity nor affect cellular localization of the expressed mutant GR in COS‐1 cells. Therefore, the PI3K‐GR interaction may contribute to the effects of GC on the TLR2 pro‐inflammatory signalling cascade, thus defining a novel signalling mechanism with a profound impact on innate immune responses.
Neurotoxicity Research | 2006
Cesar A. Romero; Diego Bustamante; Gerald Zapata-Torres; Michel Goiny; Bruce K. Cassels; Mario Herrera-Marschitz
The clinical utility of amphetamine and amphetamine analogues has been jeopardized by a number of side effects and toxicity, partly due to complex mechanisms of action. While some of the analogues have been individually characterised, there is still need for comparative studies, in particular, on their efficacy to release dopamine and 5-hydroxytryptamine, further enlightening some of the synaptic mechanisms conveying their actions. Thus, we have compared four alkoxyamphetamine derivatives,i.e.,p-methoxyamphetamine;p-methoxymethamphetamine; methylenedioxyamphetamine, methylenedioxymethamphetamine, using methamphetamine, and D-amphetamine, as reference substances, on rotational behaviour and releasing mechanisms studied within vivo microdialysis in rats.All alkoxylated-derivatives produced a long-lasting rotational behaviour at 10 mg/kg s.c., but the reference substances produced a strong rotation already at 2 mg/kg s.c. in 6-hydroxydopaminelesioned rats. At the concentration of 100 μM, the alkoxylated-derivatives were equipotent to evoke dopamine and 5-hydroxytryptamine release in rat neostriatum, while D-amphetamine and methamphetamine were more efficient on dopamine release. Pre-treatment with methamphetamine or the alkoxylated-derivatives produced a remarkable decrease of the effect of K+-depolarisation on both dopamine and 5-hydroxytryptamine release.The insertion of a methoxy or a methylenedioxy group on the benzene ring of D-amphetamine or methamphetamine, or N-methylation of the Damphetamine molecule alters the selectivity of the compounds. The efficacy of the alkoxylated-derivatives on dopamine and 5-hydroxytryptamine release was similar, but stimulated less dopamine release and produced less rotational behaviour than Damphetamine and methamphetamine. The lower efficacy of K+-depolarisation following pre-treatments with the derivatives suggests an impairment of releasable monoamine stores. The present observations can enlighten the mechanisms of action of drugs showing a high risk for abuse among young populations.
Pharmacology, Biochemistry and Behavior | 2004
Diego Bustamante; Gabriela Díaz-Véliz; Carlos Paeile; Gerald Zapata-Torres; Bruce K. Cassels
The analgesic effects of (+)- and (-)-amphetamine (AMPH), (+/-)-p-methoxyamphetamine (MA), (+/-)-N-methyl-p-methoxyamphetamine (MMA) and (+/-)-N-ethyl-p-methoxyamphetamine (EMA) were compared using two different algesimetric tests in rats. In the formalin test, (+)-AMPH elicited significant antinociception at doses of 0.2, 2 and 8 mg/kg (i.p.); (-)-AMPH was active at 2 and 8 mg/kg, but not at 0.2 mg/kg; MA elicited very potent and long-lasting antinociception; MMA was less active than MA; EMA showed significant effects only at doses of 2 and 8 mg/kg. In the C-fiber evoked nociceptive reflex assay, i.v. (+)- and (-)-AMPH were ineffective, but the methoxy derivatives showed a similar pattern of action combining inhibitory and excitatory actions. To clarify apparent discrepancies between both algesimetric tests, some behavioral motor performance tests were carried out. These tests confirm the motor stimulatory properties of (+)-AMPH, not shared by the methoxylated amphetamine derivatives. The three methoxy derivatives elicited some stereotypies related to dopaminergic activation such as grooming behavior. (+)-AMPH was also the only drug to increase the acquisition of CARs while MA and EMA were without effect. Avoidance conditioning was seriously impaired in rats injected with MMA. This conditioned behavior can be related to the significant decrease of spontaneous motor activity observed with this drug. In conclusion, the introduction of a para-methoxy group strongly increases the analgesic effects of amphetamine without its stimulatory behavioral effects. The introduction of N-alkyl substituents decreases the analgesic potency of MA.
Journal of Chemical Information and Modeling | 2012
Gerald Zapata-Torres; Angélica Fierro; Sebastián Miranda-Rojas; Carlos Guajardo; Patricio Sáez-Briones; J. Cristian Salgado; Cristian Celis-Barros
Although substrate conversion mediated by human monoaminooxidase (hMAO) has been associated with the deprotonated state of their amine moiety, data regarding the influence of protonation on substrate binding at the active site are scarce. Thus, in order to assess protonation influence, steered molecular dynamics (SMD) runs were carried out. These simulations revealed that the protonated form of the substrate serotonin (5-HT) exhibited stronger interactions at the protein surface compared to the neutral form. The latter displayed stronger interactions in the active site cavity. These observations support the possible role of the deprotonated form in substrate conversion. Multigrid docking studies carried out to rationalize the role of 5-HT protonation in other sites besides the active site indicated two energetically favored docking sites for the protonated form of 5-HT on the enzyme surface. These sites seem to be interconnected with the substrate/inhibitor cavity, as revealed by the tunnels observed by means of CAVER program. pK(a) calculations in the surface loci pointed to Glu³²⁷, Asp³²⁸, His⁴⁸⁸, and Asp¹³² as candidates for a possible in situ deprotonation step. Docking analysis of a group of inhibitors (structurally related to substrates) showed further interactions with the same two docking access sites. Interestingly, the protonated/deprotonated amine moiety of almost all compounds attained different docking poses in the active site, none of them oriented to the flavin moiety, thus producing a more variable and less productive orientations to act as substrates. Our results highlight the role of deprotonation in facilitating substrate conversion and also might reflect the necessity of inhibitor molecules to adopt specific orientations to achieve enzyme inhibition.
Molecules | 2012
Hernán Pessoa-Mahana; Gonzalo Recabarren-Gajardo; Jenny Fiedler Temer; Gerald Zapata-Torres; C. David Pessoa-Mahana; Claudio Saitz Barría; Ramiro Araya-Maturana
A series of novel benzo[b]thiophen-2-yl-3-(4-arylpiperazin-1-yl)-propan-1-one derivatives 6a–f, 7a–f and their corresponding alcohols 8a–f were synthesized and evaluated for their affinity towards 5-HT1A receptors. The influence of arylpiperazine moiety and benzo[b]thiophene ring substitutions on binding affinity was studied. The most promising analogue, 1-(benzo[b]thiophen-2-yl)-3-(4-(pyridin-2-yl)piperazin-1-yl)propan-1-one (7e) displayed micromolar affinity (Ki = 2.30 μM) toward 5-HT1A sites. Docking studies shed light on the relevant electrostatic interactions which could explain the observed affinity for this compound.