Gerard Carmona-Catot
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard Carmona-Catot.
PLOS ONE | 2013
Gerard Carmona-Catot; Kit Magellan; Emili García-Berthou
Condition-specific competition is widespread in nature. Species inhabiting heterogeneous environments tend to differ in competitive abilities depending on environmental stressors. Interactions between these factors can allow coexistence of competing species, which may be particularly important between invasive and native species. Here, we examine the effects of temperature on competitive interactions between invasive mosquitofish, Gambusia holbrooki, and an endemic Iberian toothcarp, Aphanius iberus. We compare the tendency to approach heterospecifics and food capture rates between these two species, and examine differences between sexes and species in aggressive interactions, at three different temperatures (19, 24 and 29°C) in three laboratory experiments. Mosquitofish exhibit much more aggression than toothcarp. We show that mosquitofish have the capacity to competitively displace toothcarp through interference competition and this outcome is more likely at higher temperatures. We also show a reversal in the competitive hierarchy through reduced food capture rate by mosquitofish at lower temperatures and suggest that these two types of competition may act synergistically to deprive toothcarp of food at higher temperatures. Males of both species carry out more overtly aggressive acts than females, which is probably related to the marked sexual dimorphism and associated mating systems of these two species. Mosquitofish may thus impact heavily on toothcarp, and competition from mosquitofish, especially in warmer summer months, may lead to changes in abundance of the native species and displacement to non-preferred habitats. Globally increasing temperatures mean that highly invasive, warm-water mosquitofish may be able to colonize environments from which they are currently excluded through reduced physiological tolerance to low temperatures. Research into the effects of temperature on interactions between native and invasive species is thus of fundamental importance.
Reviews in Fish Biology and Fisheries | 2012
Emili García-Berthou; Gerard Carmona-Catot; Roberto Merciai; Derek H. Ogle
The growth of many organisms is seasonal, with a dependence on variation in temperature, light, and food availability. A growth model proposed by Somers (Fishbyte 6:8–11, 1988) is one of the most widely used models to describe seasonal growth. We point out that three different formulae (beyond numerous typographical errors) have been used in the literature referring to Somers (Fishbyte 6:8–11, 1988). These formulae correspond to different curves and yield different parameter estimates with different biological interpretations. These inconsistencies have led to the wrong identification of the period of lowest growth rate (winter point) in some papers of the literature. We urge authors to carefully edit their formulae to assure use of the original definition in Somers (Fishbyte 6:8–11, 1988).
PLOS ONE | 2013
David Díez-del-Molino; Gerard Carmona-Catot; R. M. Araguas; Oriol Vidal; Nuria Sanz; Emili García-Berthou; José-Luis García-Marín
Genetic analyses contribute to studies of biological invasions by mapping the origin and dispersal patterns of invasive species occupying new territories. Using microsatellite loci, we assessed the genetic diversity and spatial population structure of mosquitofish (Gambusia holbrooki) that had invaded Spanish watersheds, along with the American locations close to the suspected potential source populations. Mosquitofish populations from the Spanish streams that were studied had similar levels of genetic diversity to the American samples; therefore, these populations did not appear to have undergone substantial losses of genetic diversity during the invasion process. Population structure analyses indicated that the Spanish populations fell into four main clusters, which were primarily associated with hydrography. Dispersal patterns indicated that local populations were highly connected upstream and downstream through active dispersal, with an average of 21.5% fish from other locations in each population. After initially introducing fish to one location in a given basin, such dispersal potential might contribute to the spread and colonization of suitable habitats throughout the entire river basin. The two-dimension isolation-by-distance pattern here obtained, indicated that the human-mediated translocation of mosquitofish among the three study basins is a regular occurrence. Overall, both phenomena, high natural dispersal and human translocation, favor gene flow among river basins and the retention of high genetic diversity, which might help retain the invasive potential of mosquitofish populations.
North American Journal of Fisheries Management | 2010
Gerard Carmona-Catot; Peter B. Moyle; Enric Aparicio; Patrick K. Crain; Lisa C. Thompson; Emili García-Berthou
Abstract Nonnative brook trout Salvelinus fontinalis are abundant in Pine Creek and its main tributary, Bogard Spring Creek, California. These creeks historically provided the most spawning and rearing habitat for endemic Eagle Lake rainbow trout Oncorhynchus mykiss aquilarum. Three-pass electrofishing removal was conducted in 2007–2009 over the entire 2.8-km length of Bogard Spring Creek to determine whether brook trout removal was a feasible restoration tool and to document the life history characteristics of brook trout in a California meadow stream. After the first 2 years of removal, brook trout density and biomass were severely reduced from 15,803 to 1,192 fish/ha and from 277 to 31 kg/ha, respectively. Average removal efficiency was 92–97%, and most of the remaining fish were removed in the third year. The lack of a decrease in age-0 brook trout abundance between 2007 and 2008 after the removal of more than 4,000 adults in 2007 suggests compensatory reproduction of mature fish that survived and hig...
Ecosphere | 2014
Gerard Carmona-Catot; Alejandra F. G. N. Santos; Pablo A. Tedesco; Emili García-Berthou
Most ecosystems undergo substantial variation over the seasons, ranging from changes in abiotic features, such as temperature, light and precipitation, to changes in species abundance and composition. How seasonality varies along latitudinal gradients is not well known in freshwater ecosystems, despite being very important in predicting the effects of climate change and in helping to advance ecological understanding. Stream temperature is often well correlated with air temperature and influences many ecosystem features such as growth and metabolism of most aquatic organisms. We evaluated the degree of seasonality in ten river mouths along a latitudinal gradient for a set of variables, ranging from air and water temperatures, to physical and chemical properties of water and growth of an invasive fish species (eastern mosquitofish, Gambusia holbrooki). Our results show that although most of the variation in air temperature was explained by latitude and season, this was not the case for water features, including temperature, in lowland Mediterranean streams, which depended less on season and much more on local factors. Similarly, although there was evidence of latitude-dependent seasonality in fish growth, the relationship was nonlinear and weak and the significant latitudinal differences in growth rates observed during winter were compensated later in the year and did not result in overall differences in size and growth. Our results suggest that although latitudinal differences in air temperature cascade through properties of freshwater ecosystems, local factors and complex interactions often override the water temperature variation with latitude and might therefore hinder projections of species distribution models and effects of climate change.
Ecosphere | 2011
John R. Durand; Robert A. Lusardi; Daniel Nover; Robyn Suddeth; Gerard Carmona-Catot; C. R. Connell-Buck; Sarah E. Gatzke; Jacob Katz; Jeffrey F. Mount; Peter B. Moyle; Joshua H. Viers
The Kobuk River runs west along the southern Brooks Range from Gates of the Arctic National Park in Alaska, USA, to the Chukchi Sea. It is highly vulnerable to changes in climate due to its sub-Arctic location, unique geography, and permafrost foundation. Combined with its pristine condition, these qualities make the Kobuk an ideal system upon which to build a conceptual model for predicting ecosystem effects of climate change. We constructed a conceptual ecosystem model for the Kobuk River synthesizing surveyed baseline hydrologic, geomorphic and biotic conditions with literature on Arctic rivers. While the mainstem Kobuk has limited biological productivity, it provides spawning habitat and connectivity for large resident and migratory fish that rely upon off-channel habitat for food resources. System function is dependent largely on intermittent pulse flows that connect riverine habitats, allowing periods of late summer high productivity in off-channel habitat. Spring break-up and hill slope processes are critically important for maintaining habitat complexity and inter-connectivity. Climate change models predict the region will experience a disproportionate increase in average winter air temperature relative to summer temperatures, in the number of ice-free days, and in annual rainfall. Our conceptual model predicts that changes to fish and invertebrate populations on the Kobuk River will result not from physiological responses to increased temperatures, but rather to shifts in two main physical drivers: 1) spring break-up intensity, resulting in changes to scour rate and sediment deposition; and 2) discontinuous permafrost melt, resulting in widespread heterogeneous zones of active layer thickening and thermokarsting. The interaction of these two drivers offers four potential scenarios of geomorphic change in the system and four dramatically different biological outcomes. This model should help managers and scientists evaluate the magnitude and direction of ecosystem changes as they occur within the Kobuk system and potentially other sub-Arctic river systems.
Aquatic Conservation-marine and Freshwater Ecosystems | 2011
Enric Aparicio; Gerard Carmona-Catot; Peter B. Moyle; Emili García-Berthou
Diversity and Distributions | 2011
Gerard Carmona-Catot; Josep Benito; Emili García-Berthou
Reviews in Fish Biology and Fisheries | 2012
Gerard Carmona-Catot; Peter B. Moyle; Rachel E. Simmons
Environmental Biology of Fishes | 2015
Carles Alcaraz; Gerard Carmona-Catot; Pilar Risueño; Silvia Perea; Cristina Rivas Pérez; Ignacio Doadrio; Enric Aparicio