Gerard G. M. D’Souza
MCPHS University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard G. M. D’Souza.
Nano Letters | 2008
Sarathi V. Boddapati; Gerard G. M. D’Souza; Suna Erdogan; Vladimir P. Torchilin; Volkmar Weissig
To further increase the therapeutic activity of drugs known to act on intracellular target sites, in vivo drug delivery approaches must actively mediate the specific delivery of drug molecules to the subcellular site of action. We show here that surface modification of nanocarriers with mitochondriotropic triphenylphosphonium cations facilitates the efficient subcellular delivery of a model drug to mitochondria of mammalian cells and improves its activity in vitro and in vivo.
Nanomedicine: Nanotechnology, Biology and Medicine | 2010
Tao Wang; Gerard G. M. D’Souza; Deepa Bedi; Olusegun A. Fagbohun; L Prasanna Potturi; Brigitte Papahadjopoulos-Sternberg; Valery A. Petrenko; Vladimir P. Torchilin
AIM To explore cancer cell-specific phage fusion pVIII coat protein, identified using phage display, for targeted delivery of drug-loaded liposomes to MCF-7 breast cancer cells. MATERIAL & METHODS An 8-mer landscape library f8/8 and a biopanning protocol against MCF-7 cells were used to select a landscape phage protein bearing MCF-7-specific peptide. Size and morphology of doxorubicin-loaded liposomes modified with the tumor-specific phage fusion coat protein (phage-Doxil) were determined by dynamic light scattering and freeze-fraction electron microscopy. Topology of the phage protein in liposomes was examined by western blot. Association of phage-Doxil with MCF-7 cells was evaluated by fluorescence microscopy and fluorescence spectrometry. Selective targeting to MCF-7 was shown by FACS using a coculture model with target and nontarget cells. Phage-Doxil-induced tumor cell killing and apoptosis were confirmed by CellTiter-Blue Assay and caspase-3/CPP32 fluorometric assay. RESULTS A chimeric phage fusion coat protein specific towards MCF-7 cells, identified from a phage landscape library, was directly incorporated into the liposomal bilayer of doxorubicin-loaded PEGylated liposomes (Doxil) without additional conjugation with lipophilic moieties. Western blotting confirmed the presence of both targeting peptide and pVIII coat protein in the phage-Doxil, which maintained the liposomal morphology and retained a substantial part of the incorporated drug after phage protein incorporation. The binding activity of the phage fusion pVIII coat protein was retained after incorporation into liposomes, and phage-Doxil strongly and specifically targeted MCF-7 cells, demonstrating significantly increased cytotoxicity towards target cells in vitro. CONCLUSION We present a novel and straightforward method for making tumor-targeted nanomedicines by anchoring specific phage proteins (substitute antibodies) on their surface.
Journal of Liposome Research | 2010
Niravkumar R. Patel; Sophia Hatziantoniou; Aristidis Georgopoulos; Costas Demetzos; Vladimir P. Torchilin; Volkmar Weissig; Gerard G. M. D’Souza
Current efforts toward improving the effectiveness of drug therapy are increasingly relying on drug-targeting strategies to effectively deliver bioactive molecules to their molecular targets. Pharmaceutical nanocarriers represent a major tool toward this aim, and our efforts have been directed toward achieving nanocarrier-mediated subcellular delivery of drug molecules with mitochondria as the primary subcellular target. Meeting the need for specific subcellular delivery is essential to realizing the full potential of many poorly soluble anticancer drugs. In this article, we report that mitochondria-targeted liposomes significantly improve the apoptotic and cytotoxic action of sclareol, a poorly soluble potential anticancer drug. The results support the broad applicability of our nanocarrier-mediated subcellular targeting approach as a means to improve the effectiveness of certain anticancer therapeutics.
Nanomedicine: Nanotechnology, Biology and Medicine | 2007
Volkmar Weissig; Sarathi V. Boddapati; Lara Jabr; Gerard G. M. D’Souza
Mitochondrial research has made an enormous leap since mitochondrial DNA mutations were identified as a primary cause for human diseases in 1988 and the organelles crucial role in apoptosis was identified during the 1990s. Considerable progress has been made in identifying the molecular components of the mitochondrial machinery responsible for life and cell death; however, effective therapies for diseases caused by mitochondrial dysfunction remain elusive. An impediment to manipulating, probing and assessing the functional components of mammalian mitochondria within living cells is their limited accessibility to direct physical, biochemical and pharmacological manipulation. Recent advances in nanotechnology hold the promise of helping to overcome these obstacles. New tools will undoubtedly emerge, creating new avenues for the diagnosis and therapy of mitochondrial disorders. This review briefly discusses current efforts to merge nanobiotechnology with mitochondrial medicine.
Pharmaceutical Research | 2008
Gerard G. M. D’Souza; Tao Wang; Karen Rockwell; Vladimir P. Torchilin
PurposeTo evaluate the potential of ascorbate as a novel ligand in the preparation of pharmaceutical nanocarriers with enhanced tumor-cell specific binding and cytotoxicity.MethodsPalmitoyl ascorbate was incorporated into liposomes at varying concentrations. A stable formulation was selected based on size and zeta potential measurements. A co-culture of cancer cells with GFP expressing non-cancer cells was used to determine the specificity of palmitoyl ascorbate liposome binding. Liposomes were fluorescently labeled to facilitate analysis by flow cytometry and fluorescence microscopy. The cytotoxic action of palmitoyl ascorbate liposomes against a variety of cell types was assayed using a standard metabolic assay. The cytotoxic effect of a low dose of paclitaxel incorporated in palmitoyl ascorbate liposomes on various cell lines was also determined.ResultsPalmitoyl ascorbate liposomes associated preferentially with various cancer cells compared to non-cancer cells in a co-culture model. Palmitoyl ascorbate liposomes exhibited anti-cancer toxicity in numerous cancer cell lines. Furthermore, ascorbate liposomes enhanced the effectiveness of encapsulated paclitaxel compared to paclitaxel encapsulated in ‘plain’ liposomes.ConclusionsSurface modification of liposomes with ascorbate residues represents a novel way to target and kill certain types of tumor cells and additionally can potentiate the effect of paclitaxel delivered by the liposomes.
Journal of Drug Targeting | 2011
Tao Wang; Nikita Kulkarni; Deepa Bedi; Gerard G. M. D’Souza; Brigitte Papahadjopoulos-Sternberg; Valery A. Petrenko; Vladimir P. Torchilin
Fusion proteins created by phage display peptides with tumor cell specificity and the pVIII major coat protein of filamentous phages have been explored recently as a simple and cost-effective means for preparing tumor-targeted liposomes that improve the cytotoxicity of anticancer drugs in vitro. The next step in the development of this approach is the optimization of the liposome composition for the maximum targeting activity and subsequent testing in vivo. This study aimed to investigate the impact of preparation protocols, lipid composition and phage protein content on the targeting efficiency of phage protein-modified liposomes. Analysis of size, zeta potential and morphology was used to investigate the effect of preparation protocols on the stability and homogeneity of the phage liposomes. A previously developed coculture targeting assay and a factorial design approach were used to determine the role of lipid composition of the liposomal membrane on the target cell specificity of the phage liposomes. Western blot combined with proteinase K treatment detected the orientation of targeted phage protein in liposomal membrane. Phage protein, DPPG and PEG2k-PE showed positive effects on target specificity of phage liposomes. The results served to identify optimal formulation that offer an improved liposomal affinity for target tumor cells over the non-optimized formulation.
Pharmaceutical Research | 2011
Rupa R. Sawant; Onkar S. Vaze; Gerard G. M. D’Souza; Karen Rockwell; Vladimir P. Torchilin
ABSTRACTPurposeTo evaluate the potential of palmitoyl ascorbate (PA)-loaded micelles for ascorbate-mediated cancer cell targeting and cytotoxicity.MethodsPA was incorporated in polyethylene glycol-phosphatidyl ethanolamine micelles at varying concentrations. The formulations were evaluated for PA content by RP-HPLC. A stable formulation was selected based on size and zeta potential measurements. A co-culture of cancer cells and GFP-expressing non-cancer cells was used to determine the specificity of PA micelle binding. In vitro cytotoxicity of the micellar formulations towards various cancer cell lines was investigated using a cell viability assay. To elucidate the mechanism of action of cell death in vitro, the effect of various H2O2 scavengers and metal chelators on PA-mediated cytotoxicity was studied. The in vivo anti-cancer activity of PA micelles was studied in female Balb/c mice bearing a murine mammary carcinoma (4T1 cells).ResultsPA micelles associated preferentially with various cancer cells compared to non-cancer cells in co-culture. PA micelles exhibited anti-cancer activity in cancer cell lines both in vitro and in vivo. The mechanism of cell death was due primarily to generation of reactive oxygen species (ROS).ConclusionsThe anti-cancer activity of PA micelles associated with its enhanced cancer cell binding and subsequent generation of ROS.
Molecular Pharmaceutics | 2011
Tao Wang; Nikita Kulkarni; Gerard G. M. D’Souza; Valery A. Petrenko; Vladimir P. Torchilin
The integration of pharmaceutical nanocarriers with phage display techniques is emerging as a new paradigm for targeted cancer nanomedicines. We explored the direct use of landscape phage fusion proteins for the self-assembly of phage-derived binding peptides to liposomes for cancer cell targeting. The primary purpose of this study was to elucidate the targeting mechanism with a particular emphasis on the relative contributions of the two motifs that make up the landscape phage fusion protein (a binding peptide and the phage pVIII coat protein) to the targeting efficiency. Using transmission electron microscopy and dynamic light scattering, we confirmed the formation of phage-liposomes. Using FACS analysis, fluorescence microscopy, and fluorescence photospectrometry, we found that liposomes modified with MCF-7-specific phage fusion proteins (MCF-7 binding peptide, DMPGTVLP, fused to the phage PVIII coat protein) provided a strong and specific association with target MCF-7 cancer cells but not with cocultured, nontarget cells including C166-GFP and NIH3T3. The substitution for the binding peptide fused to phage pVIII coat protein abolished the targeting specificity. The addition of free binding peptide, DMPGTVLP, competitively inhibited the interaction of MCF-7-specific phage-liposomes with target MCF-7 cells but showed no reduction of MCF-7-associated plain liposomes. The proteolysis of the binding peptide reduced MCF-7 cell-associated phage-liposomes in a proteinase K (PK) concentration-dependent manner with no effect on the binding of plain liposomes to MCF-7 cells. Overall, only the binding peptide motif was involved in the targeting specificity of phage-liposomes. The presence of phage pVIII coat protein did not interfere with the targeting efficiency.
Methods of Molecular Biology | 2010
Sarathi V. Boddapati; Gerard G. M. D’Souza; Volkmar Weissig
Efficacy of therapeutically active drugs known to act on intracellular targets can be enhanced by specific delivery to the site of action. Triphenylphosphonium cations can be used to create subcellular targeted liposomes that efficiently deliver drugs to mitochondria, thus enhancing their therapeutic action.
Journal of Liposome Research | 2016
Parul Benien; Melani Solomon; Paul Nguyen; Erin M. Sheehan; Ahmed S. Mehanna; Gerard G. M. D’Souza
Abstract Context: Nanocarrier-based strategies to achieve delivery of bioactives specifically to the mitochondria are being increasingly explored due to the importance of mitochondria in critical cellular processes. Objective: To test the ability of liposomes modified with newly synthesized triphenylphosphonium (TPP)–phospholipid conjugates and to test their use in overcoming the cytotoxicity of stearyl triphenylphosphonium (STPP)-modified liposomes when used for delivery of therapeutic molecules to the mitochondria. Methods: TPP–phospholipid conjugates with the dioleoyl, dimyristoyl or dipalmitoyl lipid moieties were synthesized and liposomes were prepared with these conjugates in a 1 mol% ratio. The subcellular distribution of the liposomes was tested by confocal microscopy. Furthermore, the liposomes were tested for their effect on cell viability using a MTS assay, on cell membrane integrity using a lactate dehydrogenase assay and on mitochondrial membrane integrity using a modified JC-1 assay. Results: The liposomes modified with the new TPP–phospholipid conjugates exhibited similar mitochondriotropism as STPP-liposomes but they were more biocompatible as compared to the STPP liposomes. While the STPP-liposomes had a destabilizing effect on cell and mitochondrial membranes, the liposomes modified with the TPP–phospholipid conjugates did not demonstrate any such effect on biomembranes. Conclusions: Using phospholipid anchors in the synthesis of TPP–lipid conjugates can provide liposomes that exhibit the same mitochondrial targeting ability as STPP but with much higher biocompatibility.