Gerard M. Gibbs
Monash Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard M. Gibbs.
Endocrine Reviews | 2008
Gerard M. Gibbs; Kim Roelants; Moira K. O'Bryan
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Biology of Reproduction | 2006
Brett Nixon; David A. MacIntyre; Lisa A. Mitchell; Gerard M. Gibbs; Moira K. O'Bryan; R. John Aitken
Abstract Mammalian spermatozoa must undergo capacitation before acquiring the ability to fertilize the oocyte. This process is believed to be initiated following the release of surface-associated decapacitation factors that are elaborated by both the epididymis and the male accessory organs. Herein, we report the identification of a number of proteins that are actively released from the surface of mouse spermatozoa during capacitation in vitro. As anticipated, the addition of these factors back to suspensions of mouse spermatozoa was shown to suppress several correlates of the capacitation process. Specifically, they induced a significant, dose-dependent inhibition of the ability of spermatozoa to undergo a progesterone-induced acrosome reaction and to bind to the zona pellucida in vitro. Inhibition of these functions was associated with the suppression of tyrosine phosphorylation in the sperm plasma membrane but had no effect on the phosphorylation of internal proteins in either the sperm head or tail. This inhibitory activity was attributed to a subset of the isolated proteins compromising at least four putative decapacitation factors. These proteins were identified via tandem-mass spectrometry amino acid sequence analysis as plasma membrane fatty acid binding protein, cysteine-rich secretory protein 1 (CRISP1), phosphatidylethanolamine binding protein 1 (PBP), and an unnamed protein product that we have termed decapacitation factor 10 (DF10). Of these proteins, PBP was identified as a primary candidate for a decapacitation factor.
Journal of Biological Chemistry | 2006
Gerard M. Gibbs; Martin J. Scanlon; James D. Swarbrick; Suzanne M. Curtis; Esther M. Gallant; Angela F. Dulhunty; Moira K. O'Bryan
The cysteine-rich secretory proteins (Crisp) are predominantly found in the mammalian male reproductive tract as well as in the venom of reptiles. Crisps are two domain proteins with a structurally similar yet evolutionary diverse N-terminal domain and a characteristic cysteine-rich C-terminal domain, which we refer to as the Crisp domain. We presented the NMR solution structure of the Crisp domain of mouse Tpx-1, and we showed that it contains two subdomains, one of which has a similar fold to the ion channel regulators BgK and ShK. Furthermore, we have demonstrated for the first time that the ion channel regulatory activity of Crisp proteins is attributed to the Crisp domain. Specifically, the Tpx-1 Crisp domain inhibited cardiac ryanodine receptor (RyR) 2 with an IC50 between 0.5 and 1.0 μm and activated the skeletal RyR1 with an AC50 between 1 and 10 μm when added to the cytoplasmic domain of the receptor. This activity was nonvoltage-dependent and weakly voltage-dependent, respectively. Furthermore, the Tpx-1 Crisp domain activated both RyR forms at negative bilayer potentials and showed no effect at positive bilayer potentials when added to the luminal domain of the receptor. These data show that the Tpx-1 Crisp domain on its own can regulate ion channel activity and provide compelling evidence for a role for Tpx-1 in the regulation of Ca2+ fluxes observed during sperm capacitation.
Journal of Cell Science | 2006
Leanne M. Cotton; Gerard M. Gibbs; L. Gabriel Sanchez-Partida; John R. Morrison; David M. de Kretser; Moira K. O'Bryan
Cloning of the fibroblast growth factor receptor (FGFR) adaptor Snt-2 cDNA and the identification of FGFR-1 protein in association with sperm tails, suggested that FGFR-1 signaling was involved in either sperm tail development or function. This hypothesis was tested by the creation of transgenic mice that specifically expressed a dominant-negative variant of FGFR-1 in male haploid germ cells. Mating of transgenic mice showed a significant reduction in pups per litter compared with wild-type littermates. Further analysis demonstrated that this subfertility was driven by a combination of reduced daily sperm output and a severely compromised ability of those sperm that were produced to undergo capacitation prior to fertilization. An analysis of key signal transduction proteins indicated that FGFR-1 is functional on wild-type sperm and probably signals via the phosphatidylinositol 3-kinase pathway. FGFR-1 activation also resulted in the downstream suppression of mitogen activated protein kinase signaling. These data demonstrate the FGFR-1 is required for quantitatively and qualitatively normal spermatogenesis and has a key role in the regulation of the global tyrosine phosphorylation events associated with sperm capacitation.
Human Reproduction Update | 2010
Claire Borg; Katja Wolski; Gerard M. Gibbs; Moira K. O'Bryan
BACKGROUND Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the ‘non-reproductive biologist’ to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. METHODS This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. RESULTS A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. CONCLUSION With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Gerard M. Gibbs; Gerardo Orta; Thulasimala Reddy; Adam J. Koppers; Pablo Martínez-López; José Luis de la Vega-Beltrán; Jennifer Chi Yi Lo; Nicholas A. Veldhuis; Duangporn Jamsai; Peter McIntyre; Alberto Darszon; Moira K. O'Bryan
The cysteine-rich secretory proteins (CRISPs) are a group of four proteins in the mouse that are expressed abundantly in the male reproductive tract, and to a lesser extent in other tissues. Analysis of reptile CRISPs and mouse CRISP2 has shown that CRISPs can regulate cellular homeostasis via ion channels. With the exception of the ability of CRISP2 to regulate ryanodine receptors, the in vivo targets of mammalian CRISPs function are unknown. In this study, we have characterized the ion channel regulatory activity of epididymal CRISP4 using electrophysiology, cell assays, and mouse models. Through patch-clamping of testicular sperm, the CRISP4 CRISP domain was shown to inhibit the transient receptor potential (TRP) ion channel TRPM8. These data were confirmed using a stably transfected CHO cell line. TRPM8 is a major cold receptor in the body, but is found in other tissues, including the testis and on the tail and head of mouse and human sperm. Functional assays using sperm from wild-type mice showed that TRPM8 activation significantly reduced the number of sperm undergoing the progesterone-induced acrosome reaction following capacitation, and that this response was reversed by the coaddition of CRISP4. In accordance, sperm from Crisp4 null mice had a compromised ability to undergo to the progesterone-induced acrosome reaction. Collectively, these data identify CRISP4 as an endogenous regulator of TRPM8 with a role in normal sperm function.
Biology of Reproduction | 2002
Deborah M. Hickox; Gerard M. Gibbs; John R. Morrison; Kim Sebire; Kim Edgar; Hooi-Hong Keah; Kerina Alter; Kate L. Loveland; Milton T.W. Hearn; David M. de Kretser; Moira K. O'Bryan
Abstract The phosphatidylethanolamine binding proteins (pebps) are an evolutionarily conserved family of proteins recently implicated in mitogen-activated protein (MAP) kinase pathway regulation, where they are called raf kinase inhibitory proteins. Here, we describe the cloning, cellular localization, and partial characterization of a new member, pebp-2, with potential roles in male fertility. Expression data show that pebp-2 is a testis-specific 21-kDa protein found within late meiotic and haploid germ cells in a stage-specific pattern that is temporally distinct from that of pebp-1. Sequence analyses suggest that pebp-2 forms a distinct subset of the pebp family within mammals. Database analyses revealed the existence of a third subset. Analysis suggests that the specificity/regulation of the distinct pebps subsets is likely to be determined by the amino terminal 40 amino acids or the 3′ untranslated region, where the majority of sequence differences occur. Protein homology modeling suggests that pebp-2 protein is, however, topologically similar to other pebps and composed of Greek key fold motifs, a dominant β-sheet formed from five anti-parallel β strands forming a shallow groove associated with a putative phosphatidylethanolamine binding site. The pebp-2 gene is intronless and data suggest that it is a retrogene derived from pebp-1. Further, pebp-2 colocalizes with members of the MAP kinase pathway in late spermatocytes and spermatids and on the midpiece of epididymal sperm. These data raise the possibility that pebp-2 is a novel participant in the MAP kinase signaling pathway, with a role in spermatogenesis or posttesticular sperm maturation.
Journal of Cellular Physiology | 2011
Pablo Martínez-López; Claudia L. Treviño; José Luis de la Vega-Beltrán; Gerardo A. De Blas; Esteban Monroy; Carmen Beltrán; Gerardo Orta; Gerard M. Gibbs; Moira K. O'Bryan; Alberto Darszon
Changes in the concentration of intracellular Ca2+ ([Ca2+]i) trigger and/or regulate principal sperm functions during fertilization, such as motility, capacitation, and the acrosome reaction (AR). Members of the large TRP channel family participate in a variety of Ca2+‐dependent cell signaling processes. The eight TRPM channel members constitute one of the seven groups belonging to this family. Here we document using RT‐PCR experiments the presence of Trpm2, 4, 7, and 8 in mouse spermatogenic cells. Trpm8 transcription is up‐regulated after day 30. The localization of TRPM8 protein in mouse sperm was confirmed by immunocytochemistry and Western blots. Patch clamp recordings in testicular mouse sperm revealed TRPM8 agonist (menthol and icilin) activated currents sensitive to TRPM8 inhibitors N‐(4‐t‐Butylphenyl)‐4‐(3‐Chloropyridin‐2‐yl)tetrahydropyrazine‐1(2H)‐carboxamide (BCTC) and capsazepine. These findings are consistent with the presence of functional TRPM8 in mouse sperm. Furthermore, menthol induced a [Ca2+]i increase and the AR in these cells, that were inhibited by capsazepine (20 µM) and BCTC (1.6 µM). Notably, the progesterone and zona pellucida‐induced AR was significantly (>40%) inhibited by BCTC and capsazepine, suggesting the possible participation of TRPM8 channels in this reaction. TRPM family members present in sperm could be involved in other important signaling events, such as thermotaxis, chemotaxis, and mechanosensory transduction. J. Cell. Physiol. 226: 1620–1631, 2011.
Endocrinology | 2010
Gerard M. Gibbs; Jennifer Chi Yi Lo; Brett Nixon; Duangporn Jamsai; Anne O'Connor; Sewa Rijal; L. Gabriel Sanchez-Partida; Milton T.W. Hearn; Deborah M. Bianco; Moira K. O'Bryan
The glioma pathogenesis-related 1 (GLIPR1) family consists of three genes [GLIPR1, GLIPR1-like 1 (GLIPR1L1), and GLIPR1-like 2 (GLIPR1L2)] and forms a distinct subgroup within the cysteine-rich secretory protein (CRISP), antigen 5, and pathogenesis-related 1 (CAP) superfamily. CAP superfamily proteins are found in phyla ranging from plants to humans and, based largely on expression and limited functional studies, are hypothesized to have roles in carcinogenesis, immunity, cell adhesion, and male fertility. Specifically data from a number of systems suggests that sequences within the C-terminal CAP domain of CAP proteins have the ability to promote cell-cell adhesion. Herein we cloned mouse Glipr1l1 and have shown it has a testis-enriched expression profile. GLIPR1L1 is posttranslationally modified by N-linked glycosylation during spermatogenesis and ultimately becomes localized to the connecting piece of elongated spermatids and sperm. After sperm capacitation, however, GLIPR1L1 is also localized to the anterior regions of the sperm head. Zona pellucida binding assays indicate that GLIPR1L1 has a role in the binding of sperm to the zona pellucida surrounding the oocyte. These data suggest that, along with other members of the CAP superfamily and several other proteins, GLIPR1L1 is involved in the binding of sperm to the oocyte complex. Collectively these data further strengthen the role of CAP domain-containing proteins in cellular adhesion and propose a mechanism whereby CAP proteins show overlapping functional significance during fertilization.
Reproduction | 2008
Duangporn Jamsai; Deborah M. Bianco; Stephanie Smith; Donna Jo Merriner; Jennifer D Ly-Huynh; Amy Herlihy; Birunthi Niranjan; Gerard M. Gibbs; Moira K. O'Bryan
Cysteine-rich secretory protein 2 (CRISP2) is a testis-enriched protein localized to the sperm acrosome and tail. CRISP2 has been proposed to play a critical role in spermatogenesis and male fertility, although the precise function(s) of CRISP2 remains to be determined. Recent data have shown that the CRISP domain of the mouse CRISP2 has the ability to regulate Ca(2+) flow through ryanodine receptors (RyR) and to bind to MAP kinase kinase kinase 11 (MAP3K11). To further define the biochemical pathways within which CRISP2 is involved, we screened an adult mouse testis cDNA library using a yeast two-hybrid assay to identify CRISP2 interacting partners. One of the most frequently identified CRISP2-binding proteins was gametogenetin 1 (GGN1). Interactions occur between the ion channel regulatory region within the CRISP2 CRISP domain and the carboxyl-most 158 amino acids of GGN1. CRISP2 does not bind to the GGN2 or GGN3 isoforms. Furthermore, we showed that Ggn1 is a testis-enriched mRNA and the protein first appeared in late pachytene spermatocytes and was up-regulated in round spermatids before being incorporated into the principal piece of the sperm tail where it co-localized with CRISP2. These data along with data on RyR and MAP3K11 binding define the CRISP2 CRISP domain as a protein interaction motif and suggest a role for the GGN1-CRISP2 complex in sperm tail development and/or motility.