Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gérard M. Stampfli is active.

Publication


Featured researches published by Gérard M. Stampfli.


Palaeogeography, Palaeoclimatology, Palaeoecology | 1991

Tethyan margins in space and time

Gérard M. Stampfli; J. Marcoux; Aymon Baud

Abstract Rifting processes, leading to sea-floor spreading, are characterized by a sequence of events: transtensive phase of extension with syn-rift volcanism; simple shear extension accompanied by lithospheric thinning and asthenospheric up-welling and thermal uplift of the rift shoulder and asymmetric volcanism. The simple shear model of extension leads to an asymmetric model of passive margin: a lower plate tilted block margin and an upper plate flexural, ramp-like margin. Both will be affected by thermal contraction and subsidence, starting soon after sea-floor spreading. Based on these actualistic models Tethyan margins are classified as one type or the other. Their evolution from the first transtensional phase of extension to the passive margin stage are analyzed. Four main rifting events are recognized in the Tethyan realm: an episode of lower Paleozoic events leading to the formation of the Paleotethys; a Late Paleozoic event leading to the opening of the Permotethys and East Mediterranean basin; an early Mesozoic event leading to the opening of the Pindos Neotethys and a Jurassic event related to the opening of the Alpine/Atlantic Neotethys. Type margins are given as example of each rifting event: Northern Iran (Alborz) as a type area for the Late Ordovician to Silurian rifting of Paleotethys. Northern India and Oman for the Late Carboniferous to early Permian rifting of Permotethys. The East Mediterranean (Levant, Tunisia) as a Late Carboniferous rifting event. The Neotethyan rifting phases are separated in two types: an eastern Pindos system found in Turkey and Greece is genetically linked to the Permotethys with a sea-floor spreading delayed until middle Triassic; a western Alpine system directly linked to the opening of the central Atlantic is characterized by a Late triassic transtensive phase, an early to Middle Liassic break-away phase and, following sea-floor spreading, a thermal subsidence phase starting in Dogger. Problems related to the closure of the Paleozoic oceanic domains are reviewed. A Late Permian, early Triassic phase of “docking” between an European accretionary prism (Chios) and a Paleotethyan margin is supported by recent findings in the Mediterranean area. Back-arc rifting within the European active margin led to the formation of marginal seas during Permian and triassic times and will contribute to the closure of the Paleozoic oceans.


Tectonophysics | 2003

Gondwana-derived microcontinents — the constituents of the Variscan and Alpine collisional orogens

Jürgen F. von Raumer; Gérard M. Stampfli; François Bussy

Abstract The European Variscan and Alpine mountain chains are collisional orogens, and are built up of pre-Variscan “building blocks” which, in most cases, originated at the Gondwana margin. Such pre-Variscan elements were part of a pre-Ordovician archipelago-like continental ribbon in the former eastern prolongation of Avalonia, and their present-day distribution resulted from juxtaposition through Variscan and/or Alpine tectonic evolution. The well-known nomenclatures applied to these mountain chains are the mirror of Variscan resp. Alpine organization. It is the aim of this paper to present a terminology taking into account their pre-Variscan evolution at the Gondwana margin. They may contain relics of volcanic islands with pieces of Cadomian crust, relics of volcanic arc settings, and accretionary wedges, which were separated from Gondwana by initial stages of Rheic ocean opening. After a short-lived Ordovician orogenic event and amalgamation of these elements at the Gondwanan margin, the still continuing Gondwana-directed subduction triggered the formation of Ordovician Al-rich granitoids and the latest Ordovician opening of Palaeo-Tethys. An example from the Alps (External Massifs) illustrates the gradual reworking of Gondwana-derived, pre-Variscan elements during the Variscan and Alpine/Tertiary orogenic cycles.


Archive | 2004

The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain

Gérard M. Stampfli; Gilles D. Borel

The Phanerozoic evolution of the western Tethyan region was dominated by terrane collisions and accretions, during the Variscan, Cimmerian and Alpine cycles. Most terranes were derived from Gondwana and present a similar early Palaeozoic evolution. Subsequently, they were detached from Gondwana and affected by different deformation and metamorphic events, which permit to decipher their geodynamic history. Lithospheric scale peri-Mediterranean transects show the present-day juxtaposition of these terranes, but do not allow to unravel their exotic nature or their duplication. To create a reliable palinspastic model around these transects, plate tectonics constraints must be taken into consideration in order to assess the magnitude of lateral displacements. For most of the transects and their different segments, thousand km scale differential transport can be demonstrated.


Tectonophysics | 1998

Subduction and obduction processes in the Swiss Alps

Gérard M. Stampfli; Jon Mosar; D. Marquer; R. Marchant; T. Baudin; Gilles D. Borel

Abstract The significance of the Brianconnais domain in the Alpine orogen is reviewed in the light of data concerning its collision with the active Adriatic margin and the passive Helvetic margin. The Brianconnais which formerly belonged to the Iberian plate, was located on the northern margin of the Alpine Tethys (Liguro-Piemont ocean) since its opening in the early-Middle Jurassic. Together with the Iberian plate the Brianconnais terrane was separated from the European plate in the Late Jurassic–Early Cretaceous, following the northern Atlantic, Bay of Biscay, Valais ocean opening. This was accompanied by the onset of subduction along the northern margin of Adria and the closure of the Alpine Tethys. Stratigraphic and metamorphic data regarding this subduction and the geohistory of the Brianconnais allows the scenario of subduction–obduction processes during the Late Cretaceous–early Tertiary in the eastern and western Alps to be specified. HP–LT metamorphism record a long-lasting history of oceanic subduction-accretion, followed in the Middle Eocene by the incorporation of the Brianconnais as an exotic terrane into the accretionary prism. Middle to Late Eocene cooling ages of the Brianconnais basement and the presence of pelagic, anorogenic sedimentation lasting until the Middle Eocene on the Brianconnais preclude any sort of collision before that time between this domain and the active Adria margin or the Helvetic margin. This is confirmed by plate reconstructions constrained by magnetic anomalies in the Atlantic domain. Only a small percentage of the former Brianconnais domain was obducted, most of the crust and lithospheric roots were subducted. This applies also to domains formerly belonging to the southern Alpine Tethys margin (Austroalpine–inner Carpathian domain). It is proposed that there was a single Palaeogene subduction zone responsible for the Alpine orogen formation (from northern Spain to the East Carpathians), with the exception of a short-lived Late Cretaceous partial closure of the Valais ocean. Subduction in the western Tethyan domain originated during the closure of the Meliata ocean during the Jurassic incorporating the Austroalpine–Carpathian domain as terranes during the Cretaceous. The subduction zone propagated into the northern margin of Adria and then to the northern margin of the Iberian plate, where it gave birth to the Pyrenean–Provencal orogenic belt. This implies the absence of a separated Cretaceous subduction zone within the Austro-Carpathian Penninic ocean. Collision of Iberia with Europe forced the subduction to jump to the SE margin of Iberia in the Eocene, creating the Apenninic orogenic wedge and inverting the vergence of subduction from south- to north-directed.


Geological Society of America Special Papers | 2002

Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision

Gérard M. Stampfli; Jürgen F. von Raumer; Gilles D. Borel

The well-known Variscan basement areas of Europe contain relic terranes with a pre-Variscan evolution testifying to their peri-Gondwanan origin (e.g., relics of Neoproterozoic volcanic arcs, and subsequent stages of accretionary wedges, backarc rifting, and spreading). The evolution of these terranes was guided by the diachronous subduction of the proto-Tethys oceanic ridge under different segments of the Gondwana margin. This subduction triggered the emplacement of magmatic bodies and the formation of backarc rifts, some of which became major oceanic realms (Rheic, paleoTethys). Consequently, the drifting of Avalonia was followed, after the Silurian and a short Ordovician orogenic event, by the drifting of Armorica and Alpine domains, accompanied by the opening of the paleo-Tethys. The slab rollback of the Rheic ocean is viewed as the major mechanism for the drifting of the European Variscan terranes. This, in turn, generated a large slab pull force responsible for the opening of major rift zones within the passive Eurasian margin. Therefore, the µrst Middle Devonian Variscan orogenic event is viewed as the result of a collision between terranes detached from Gondwana (grouped as the Hun superterrane) and terranes detached from Eurasia. Subsequently, the amalgamated terranes collided with Eurasia in a second Variscan orogenic event in Visean time, accompanied by large-scale lateral escape of major parts of the accreted margin. Final collision of Gondwana with Laurussia did not take place before Late Carboniferous time and was responsible for the Alleghanian orogeny.


Geological Society of America Bulletin | 2013

Pre-Mesozoic Alpine basements— Their place in the European Paleozoic framework

Jürgen F. von Raumer; François Bussy; Urs Schaltegger; Bernhard Schulz; Gérard M. Stampfli

Prior to their Alpine overprinting, most of the pre-Mesozoic basement areas in Alpine orogenic structures shared a complex evolution, starting with Neoproterozoic sediments that are thought to have received detrital input from both West and East Gondwanan cratonic sources. A subsequent Neoproterozoic–Cambrian active margin setting at the Gondwana margin was followed by a Cambrian–Ordovician rifting period, including an Ordovician cordillera-like active margin setting. During the Late Ordovician and Silurian periods, the future Alpine domains recorded crustal extension along the Gondwana margin, announcing the future opening of the Paleotethys oceanic domain. Most areas then underwent Variscan orogenic events, including continental subduction and collisions with Avalonian-type basement areas along Laurussia and the juxtaposition and the duplication of terrane assemblages during strike slip, accompanied by contemporaneous crustal shortening and the subduction of Paleotethys under Laurussia. Thereafter, the final Pangea assemblage underwent Triassic and Jurassic extension, followed by Tertiary shortening, and leading to the buildup of the Alpine mountain chain. Recent plate-tectonic reconstructions place the Alpine domains in their supposed initial Cambrian–Ordovician positions in the eastern part of the Gondwana margin, where a stronger interference with the Chinese blocks is proposed, at least from the Ordovician onward. For the Visean time of the Variscan continental collision, the distinction of the former tectonic lower-plate situation is traceable but becomes blurred through the subsequent oblique subduction of Paleotethys under Laurussia accompanied by large-scale strike slip. Since the Pennsylvanian, this global collisional scenario has been replaced by subsequent and ongoing shortening and strike slip under rising geothermal conditions, and all of this occurred before all these puzzle elements underwent the complex Alpine reorganization.


Geological Society, London, Special Publications | 2009

Plate tectonics of the Alpine realm

Gérard M. Stampfli; Cyril Hochard

Abstract New field data on the East Mediterranean domain suggest that this oceanic basin belonged to the larger Neotethyan oceanic system that opened in Permian times. A Greater Apulia domain existed in Mesozoic times, including the autochthonous units of Greece and SW Turkey. It also included a united Adria and Apulia microplate since Early Jurassic times. This key information implies that a new post-Variscan continental fit for the western Tethyan area is necessary, where the relationships between the Adriatic, Apulian and Iberian plates are defined with greater confidence. To construct a reliable palinspastic model of the Alpine realm, plate tectonic constraints must be taken into consideration in order to assess the magnitude of lateral displacements. For most of the plates and their different terranes, differential transport on the scale of thousands of kilometres can be demonstrated. This plate tectonic framework allows a better geodynamic scenario for the formation of the Alpine chain to be proposed, where the western and eastern transects have experienced contrasting geological evolutions. The eastern Alps–Carpathians domain evolved from the north-directed roll-back of the Maliac–Meliata slab and translation of the Meliata suture and Austroalpine domain into the Alpine domain. In the western Alps, the changing African plate boundary in space and time defined the interaction between the Iberian–Briançonnais plate and the Austroalpine accretionary wedge.


Geological Society of America Bulletin | 1998

Mesozoic sequence of Fuerteventura (Canary Islands): Witness of Early Jurassic sea-floor spreading in the central Atlantic

Christian Steiner; Alice Hobson; Philippe Favre; Gérard M. Stampfli; Jean Hernandez

The Fuerteventura Jurassic sedimentary succession consists of oceanic and clastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post–late Pliensbachian). We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian–Bajocian) and of clastic deposits reflecting tectono-eustatic events (e.g., late Toarcian to mid-Callovian erosion of the rift shoulder). The S-1 sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian–Oxfordian red clays, Aptian–Albian black shales) alternating with clastic deposits (e.g., Kimmeridgian–Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.


Tectonophysics | 1992

From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys

P. Favre; Gérard M. Stampfli

Abstract Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).


Tectonophysics | 1997

Subduction of continental crust in the Western Alps

R. Marchant; Gérard M. Stampfli

As a result of recent deep reflection and refraction seismology the crustal structure of the Western Alps is now quite well-defined. However, this raises the question of what is present below the Moho, such as a crustal eclogitic root. This study attempts to estimate the volume of this eclogitic root on the basis of palinspastic reconstructions. Even with a minimum estimate of the crustal material involved in the subduction processes which took place during the Alpine orogeny, a significant eclogitized crustal root must be present down to depths of around 100 km below the Po plain. A maximum estimate suggests that a large part of this root could now be recycled in the asthenosphere.

Collaboration


Dive into the Gérard M. Stampfli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Marchant

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge