Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerard Manning is active.

Publication


Featured researches published by Gerard Manning.


Nature | 2008

The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans

Nicole King; M. Jody Westbrook; Susan L. Young; Alan Kuo; Monika Abedin; Jarrod Chapman; Stephen R. Fairclough; Uffe Hellsten; Yoh Isogai; Ivica Letunic; Michael T. Marr; David Pincus; Nicholas Putnam; Antonis Rokas; Kevin J. Wright; Richard Zuzow; William Dirks; Matthew C. Good; David Goodstein; Derek Lemons; Wanqing Li; Jessica B. Lyons; Andrea Morris; Scott A. Nichols; Daniel J. Richter; Asaf Salamov; Jgi Sequencing; Peer Bork; Wendell A. Lim; Gerard Manning

Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.


PLOS Biology | 2007

The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families

Shibu Yooseph; Granger Sutton; Douglas B. Rusch; Aaron L. Halpern; Shannon J. Williamson; Karin A. Remington; Jonathan A. Eisen; Karla B. Heidelberg; Gerard Manning; Weizhong Li; Lukasz Jaroszewski; Piotr Cieplak; Christopher S. Miller; Huiying Li; Susan T. Mashiyama; Marcin P Joachimiak; Christopher van Belle; John-Marc Chandonia; David A W Soergel; Yufeng Zhai; Kannan Natarajan; Shaun W. Lee; Benjamin J. Raphael; Vineet Bafna; Robert Friedman; Steven E. Brenner; Adam Godzik; David Eisenberg; Jack E. Dixon; Susan S. Taylor

Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.


Nature | 2010

The Amphimedon queenslandica genome and the evolution of animal complexity

Mansi Srivastava; Oleg Simakov; Jarrod Chapman; Bryony Fahey; Marie Gauthier; Therese Mitros; Gemma S. Richards; Cecilia Conaco; Michael Dacre; Uffe Hellsten; Claire Larroux; Nicholas H. Putnam; Mario Stanke; Maja Adamska; Aaron E. Darling; Sandie M. Degnan; Todd H. Oakley; David C. Plachetzki; Yufeng F. Zhai; Marcin Adamski; Andrew Calcino; Scott F. Cummins; David Goodstein; Christina Harris; Daniel J. Jackson; Sally P. Leys; Shengqiang Q. Shu; Ben J. Woodcroft; Michel Vervoort; Kenneth S. Kosik

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Science | 2007

Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia

Hilary G. Morrison; Andrew G. McArthur; Frances D. Gillin; Stephen B. Aley; Rodney D. Adam; Gary J. Olsen; Aaron A. Best; W. Zacheus Cande; Feng Chen; Michael J. Cipriano; Barbara J. Davids; Scott C. Dawson; Heidi G. Elmendorf; Adrian B. Hehl; Michael E. Holder; Susan M. Huse; Ulandt Kim; Erica Lasek-Nesselquist; Gerard Manning; Anuranjini Nigam; Julie E. J. Nixon; Daniel Palm; Nora Q.E. Passamaneck; Anjali Prabhu; Claudia I. Reich; David S. Reiner; John Samuelson; Staffan G. Svärd; Mitchell L. Sogin

The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardias requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardias genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea

Christopher B. Walker; J.R. de la Torre; Martin G. Klotz; Hidetoshi Urakawa; Nicolás Pinel; Daniel J. Arp; Céline Brochier-Armanet; Patrick Chain; Patricia P. Chan; A. Gollabgir; James Hemp; Michael Hügler; E.A. Karr; Martin Könneke; Maria V. Shin; Thomas J. Lawton; Todd M. Lowe; Willm Martens-Habbena; Luis A. Sayavedra-Soto; D. Lang; Stefan M. Sievert; Amy C. Rosenzweig; Gerard Manning; David A. Stahl

Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The fold of α-synuclein fibrils

Marçal Vilar; Hui-Ting Chou; Thorsten Lührs; Samir K. Maji; Dominique Riek-Loher; René Verel; Gerard Manning; Henning Stahlberg; Roland Riek

The aggregation of proteins into amyloid fibrils is associated with several neurodegenerative diseases. In Parkinsons disease it is believed that the aggregation of α-synuclein (α-syn) from monomers by intermediates into amyloid fibrils is the toxic disease-causative mechanism. Here, we studied the structure of α-syn in its amyloid state by using various biophysical approaches. Quenched hydrogen/deuterium exchange NMR spectroscopy identified five β-strands within the fibril core comprising residues 35–96 and solid-state NMR data from amyloid fibrils comprising the fibril core residues 30–110 confirmed the presence of β-sheet secondary structure. The data suggest that β1-strand interacts with β2, β2 with β3, β3 with β4, and β4 with β5. High-resolution cryoelectron microscopy revealed the protofilament boundaries of ≈2 × 3.5 nm. Based on the combination of these data and published structural studies, a fold of α-syn in the fibrils is proposed and discussed.


Cancer Research | 2009

TORC-Specific Phosphorylation of Mammalian Target of Rapamycin (mTOR): Phospho-Ser2481 Is a Marker for Intact mTOR Signaling Complex 2

Jeremy T. Copp; Gerard Manning; Tony Hunter

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic component of two evolutionarily conserved signaling complexes. mTOR signaling complex 1 (mTORC1) is a key regulator of growth factor and nutrient signaling. S6 kinase is the best-characterized downstream effector of mTORC1. mTOR signaling complex 2 (mTORC2) has a role in regulating the actin cytoskeleton and activating Akt through S473 phosphorylation. Herein, we show that mTOR is phosphorylated differentially when associated with mTORC1 and mTORC2 and that intact complexes are required for these mTORC-specific mTOR phosphorylations. Specifically, we find that mTORC1 contains mTOR phosphorylated predominantly on S2448, whereas mTORC2 contains mTOR phosphorylated predominantly on S2481. Using S2481 phosphorylation as a marker for mTORC2 sensitivity to rapamycin, we find that mTORC2 formation is in fact rapamycin sensitive in several cancer cell lines in which it had been previously reported that mTORC2 assembly and function were rapamycin insensitive. Thus, phospho-S2481 on mTOR serves as a biomarker for intact mTORC2 and its sensitivity to rapamycin.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)

Jason E. Stajich; Sarah K. Wilke; Dag Ahrén; Chun Hang Au; Bruce W. Birren; Mark Borodovsky; Claire Burns; Björn Canbäck; Lorna A. Casselton; Chi Keung Cheng; Jixin Deng; Fred S. Dietrich; David C. Fargo; Mark L. Farman; Allen C. Gathman; Jonathan M. Goldberg; Roderic Guigó; Patrick J. Hoegger; James Hooker; Ashleigh Huggins; Timothy Y. James; Takashi Kamada; Sreedhar Kilaru; Chinnapa Kodira; Ursula Kües; Doris M. Kupfer; Hoi Shan Kwan; Alexandre Lomsadze; Weixi Li; Walt W. Lilly

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 108 synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.


Nature | 2012

RPN-6 determines C. elegans longevity under proteotoxic stress conditions

David Vilchez; Ianessa Morantte; Zheng Liu; Peter M. Douglas; Carsten Merkwirth; Ana Cristina P Rodrigues; Gerard Manning; Andrew Dillin

Organisms that protect their germ-cell lineages from damage often do so at considerable cost: limited metabolic resources become partitioned away from maintenance of the soma, leaving the ageing somatic tissues to navigate survival amid an environment containing damaged and poorly functioning proteins. Historically, experimental paradigms that limit reproductive investment result in lifespan extension. We proposed that germline-deficient animals might exhibit heightened protection from proteotoxic stressors in somatic tissues. We find that the forced re-investment of resources from the germ line to the soma in Caenorhabditis elegans results in elevated somatic proteasome activity, clearance of damaged proteins and increased longevity. This activity is associated with increased expression of rpn-6, a subunit of the 19S proteasome, by the FOXO transcription factor DAF-16. Ectopic expression of rpn-6 is sufficient to confer proteotoxic stress resistance and extend lifespan, indicating that rpn-6 is a candidate to correct deficiencies in age-related protein homeostasis disorders.


Nature | 2011

Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB

William Mair; Ianessa Morantte; Ap Rodrigues; Gerard Manning; Marc Montminy; Reuben J. Shaw; Andrew Dillin

Activating AMPK or inactivating calcineurin slows ageing in Caenorhabditis elegans and both have been implicated as therapeutic targets for age-related pathology in mammals. However, the direct targets that mediate their effects on longevity remain unclear. In mammals, CREB-regulated transcriptional coactivators (CRTCs) are a family of cofactors involved in diverse physiological processes including energy homeostasis, cancer and endoplasmic reticulum stress. Here we show that both AMPK and calcineurin modulate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC. We demonstrate that CRTC-1 is a direct AMPK target, and interacts with the CREB homologue-1 (CRH-1) transcription factor in vivo. The pro-longevity effects of activating AMPK or deactivating calcineurin decrease CRTC-1 and CRH-1 activity and induce transcriptional responses similar to those of CRH-1 null worms. Downregulation of crtc-1 increases lifespan in a crh-1-dependent manner and directly reducing crh-1 expression increases longevity, substantiating a role for CRTCs and CREB in ageing. Together, these findings indicate a novel role for CRTCs and CREB in determining lifespan downstream of AMPK and calcineurin, and illustrate the molecular mechanisms by which an evolutionarily conserved pathway responds to low energy to increase longevity.

Collaboration


Dive into the Gerard Manning's collaboration.

Top Co-Authors

Avatar

Tony Hunter

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Jack E. Dixon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Scheeff

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph P. Noel

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Yufeng Zhai

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge