Gerard Merkx
Radboud University Nijmegen Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerard Merkx.
American Journal of Human Genetics | 2002
Joris A. Veltman; Eric F.P.M. Schoenmakers; Bert H.J. Eussen; Irene M. Janssen; Gerard Merkx; Brigitte van Cleef; Conny M. A. van Ravenswaaij; Han G. Brunner; Dominique Smeets; Ad Geurts van Kessel
Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome-specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure.
Journal of Medical Genetics | 2004
David A. Koolen; Willy M. Nillesen; M H A Versteeg; Gerard Merkx; N.V.A.M. Knoers; Marleen Kets; Sascha Vermeer; C.M.A. van Ravenswaaij; C. de Kovel; Han G. Brunner; Dominique Smeets; B. de Vries; Erik A. Sistermans
Background: Subtelomeric rearrangements contribute to idiopathic mental retardation and human malformations, sometimes as distinct mental retardation syndromes. However, for most subtelomeric defects a characteristic clinical phenotype remains to be elucidated. Objective: To screen for submicroscopic subtelomeric aberrations using multiplex ligation dependent probe amplification (MLPA). Methods: 210 individuals with unexplained mental retardation were studied. A new set of subtelomeric probes, the SALSA P036 human telomere test kit, was used. Results: A subtelomeric aberration was identified in 14 patients (6.7%) (10 deletions and four duplications). Five deletions were de novo; four were inherited from phenotypically normal parents, suggesting that these were polymorphisms. For one deletion, DNA samples of the parents were not available. Two de novo submicroscopic duplications were detected (dup 5qter, dup 12pter), while the other duplications (dup 18qter and dup 22qter) were inherited from phenotypically similarly affected parents. All clinically relevant aberrations (de novo or inherited from similarly affected parents) occurred in patients with a clinical score of ⩾3 using an established checklist for subtelomeric rearrangements. Testing of patients with a clinical score of ⩾3 increased the diagnostic yield twofold to 12.4%. Abnormalities with clinical relevance occurred in 6.3%, 5.1%, and 1.7% of mildly, moderately, and severely retarded patients, respectively, indicating that testing for subtelomeric aberrations among mildly retarded individuals is necessary. Conclusions: The value of MLPA is confirmed. Subtelomeric screening can be offered to all mentally retarded patients, although clinical preselection increases the percentage of chromosomal aberrations detected. Duplications may be a more common cause of mental retardation than has been appreciated.
Human Genetics | 1994
Dominique Smeets; Ute Moog; Corry M. R. Weemaes; G. Vaes-Peeters; Gerard Merkx; Jeanette P. Niehof; Guus Hamers
Patients with ICF syndrome can be recognized by the presence of a variable immunodeficiency, instability of the pericentromeric heterochromatin of, in particular, chromosomes 1, 9, and 16 in cultured peripheral lymphocytes, and a number of facial anomalies. Recently, aberrations at the molecular level have been described, consisting of alterations in the methylation pattern of classical satellite DNA, in a number of patients. ICF syndrome is considered to be inherited in an autosomal recessive manner and may be rare, as only 14 patients have been described thus far. We present a new case, a boy with agammaglobulinemia, who was extensively studied by means of classical cytogenetics and fluorescent in situ hybridization. All patients previously reported in the literature are reviewed.
Genes, Chromosomes and Cancer | 2002
Diederik R.H. de Bruijn; Nuno R. dos Santos; Ellen Kater-Baats; José Thijssen; Lieke van den Berk; Jiska Stap; M. Balemans; Marga Schepens; Gerard Merkx; Ad Geurts van Kessel
The SSX gene family is composed of at least five functional and highly homologous members, SSX1 to SSX5, that are normally expressed in only the testis and thyroid. SSX1, SSX2, or SSX4 may be fused to the SYT gene as a result of the t(X;18) translocation in synovial sarcoma. In addition, the SSX1, SSX2, SSX4, and SSX5 genes were found to be aberrantly expressed in several other malignancies, including melanoma. The SSX proteins are localized in the nucleus and are diffusely distributed. In addition, they may be included in polycomb‐group nuclear bodies. Other studies have indicated that the SSX proteins may act as transcriptional repressors. As a first step toward the elucidation of the cellular signaling networks in which the SSX proteins may act, we used the yeast two‐hybrid system to identify SSX2‐interacting proteins. By doing so, two novel human proteins were detected: RAB3IP, the human homolog of an interactor of the Ras‐like GTPase Rab3A; and a novel protein, SSX2IP. RAB3IP did not interact with either SSX1, SSX3, or SSX4 in the yeast two‐hybrid system, whereas SSX2IP interacted with SSX3 but not with either SSX1 or SSX4. Further analysis of deletion mutants showed that both RAB3IP and SSX2IP interact with the N‐terminal moiety of the SSX2 protein. Immunofluorescence analyses of transfected cells revealed that the RAB3IP protein is normally localized in the cytoplasm. However, coexpression of both RAB3IP and SSX2 led to colocalization of both proteins in the nucleus. Likewise, the SSX2IP protein was found to be colocalizing with SSX2 in the nucleus. By performing glutathione‐S‐transferase pull‐down assays, we found that both RAB3IP and SSX2IP interact directly with SSX2 in vitro. These newly observed protein/protein interactions may have important implications for the mechanisms underlying normal and malignant cellular growth.
Cancer Genetics and Cytogenetics | 1997
Richard J. Sinke; Trȳnie Dijkhuizen; Bert Janssen; Daniël Olde Weghuis; Gerard Merkx; Eva van den Berg; Ed Schuuring; A.M. Meloni; Bauke de Jong; Ad Geurts van Kessel
Recent cytogenetic analysis of a series of human renal oncocytomas revealed the presence of a recurring chromosomal translocation (5;11)(q35;q13) as sole anomaly in a subset of the tumors. The molecular characterization of this translocation was initiated using two primary t(5;11)-positive renal oncocytomas and a panel of somatic cell hybrids derived from one of these tumors, in conjunction with fluorescence in situ hybridization (FISH) and Southern blot analysis. The breakpoint in chromosome band 11q13 could be located within a genomic interval of at maximum 400 Kb immediately centromeric to the BCL1 locus.
Genes, Chromosomes and Cancer | 2001
Marc J. Eleveld; Danielle Bodmer; Gerard Merkx; Angelique Siepman; Sandra H. E. Sprenger; Marian A. J. Weterman; Marjolijn J. L. Ligtenberg; Jorieke Kamp; Wim Stapper; Judith W. M. Jeuken; Dominique Smeets; Arie P.T. Smits; Ad Geurts van Kessel
We identified a novel familial case of clear‐cell renal cancer and a t(3;6)(q12;q15). Subsequent cytogenetic and molecular analyses showed the presence of several abnormalities within tumour samples obtained from different patients. Loss of the der(3) chromosome was noted in some, but not all, of the samples. A concomitant VHL gene mutation was found in one of the samples. In addition, cytogenetic and molecular evidence for heterogeneity was obtained through analysis of several biopsy samples from one of the tumours. Based on these results and those reported in the literature, we conclude that loss of der(3) and subsequent VHL gene mutation may represent critical steps in the development of renal cell cancers in persons carrying the chromosome 3 translocation. Moreover, preliminary data suggest that other (epi)genetic changes may be related to tumour initiation.
Human Genetics | 1991
Dominique Smeets; Gerard Merkx; Anton H. M. Hopman
SummaryThe presence of DA/DAPI (distamycin A/ 4,6-diamino-2-phenyl-indole) heteromorphism on the short arm of human acrocentric chromosomes was investigated in 127 individuals. In 7 cases, a DA/DAPI signal was observed on an acrocentric chromosome other than 15. Subsequently, in situ hybridization (ISH) with a pericentromeric probe specific for chromosome 15 was carried out. In all 7 cases, three ISH signals were present in every metaphase, i.e., on both chromosomes 15 and on the third DA/DAPI-fluorescence-positive acrocentric chromosome (a chromosome 13 or 14), indicating that a chromosome 15 short arm was also present on these chromosomes. Therefore, we conclude that translocations of short arm sequences from chromosome 15 onto other D-group chromosomes occur frequently. Moreover, it appears that DA/DAPI staining remains specific for the short arm of chromosome 15, despite a number of recent papers suggesting otherwise.
Genes, Chromosomes and Cancer | 2013
E.F.P.M. Schoenmakers; Jens Bunt; Lianne Hermers; Marga Schepens; Gerard Merkx; Bert Janssen; Monique Kersten; Erik Huys; Patrick Pauwels; Maria Debiec-Rychter; Ad Geurts van Kessel
Uterine leiomyomas are benign solid tumors of mesenchymal origin which occur with an estimated incidence of up to 77% of all women of reproductive age. The majority of these tumors remains symptomless, but in about a quarter of cases they cause leiomyoma‐associated symptoms including chronic pelvic pain, menorrhagia‐induced anemia, and impaired fertility. As a consequence, they are the most common indication for pre‐menopausal hysterectomy in the USA and Japan and annually translate into a multibillion dollar healthcare problem. Approximately 40% of these neoplasms present with recurring structural cytogenetic anomalies, including del(7)(q22), t(12;14)(q15;q24), t(1;2)(p36;p24), and anomalies affecting 6p21 and/or 10q22. Using positional cloning strategies, we and others previously identified HMGA1, HMGA2, RAD51L1, MORF, and, more recently, NCOA1 as primary target (fusion) genes associated with tumor initiation in four of these distinct cytogenetic subgroups. Despite the fact that the del(7)(q22) subgroup is the largest among leiomyomas, and was first described more than twenty years ago, the 7q22 leiomyoma target gene still awaits unequivocal identification. We here describe a positional cloning effort from two independent uterine leiomyomas, containing respectively a pericentric and a paracentric chromosomal inversion, both affecting band 7q22. We found that both chromosomal inversions target the cut‐like homeobox 1 (CUX1) gene on chromosomal band 7q22.1 in a way which is functionally equivalent to the more frequently observed del(7q) cases, and which is compatible with a mono‐allelic knock‐out scenario, similar as was previously described for the cytogenetic subgroup showing chromosome 14q involvement.
Molecular Syndromology | 2010
D.R.H. de Bruijn; A.H.A. van Dijk; R.P. Pfundt; Alexander Hoischen; Gerard Merkx; Gyri Aasland Gradek; Helle Lybæk; Asbjørg Stray-Pedersen; Han G. Brunner; Gunnar Houge
In a 19-year-old severely autistic and mentally retarded girl, a balanced de novo t(14;21)(q21.1;p11.2) translocation was found in addition to a de novo 2.6-Mb 2q31.1 deletion containing 15 protein-encoding genes. To investigate if the translocation might contribute to developmental stagnation at the age of 2 years with later regression of skills, i.e. a more severe phenotype than expected from the 2q31.1 deletion, the epigenetic status and expression of genes proximal and distal to the 14q21.1 breakpoint were investigated in Ebstein Barr Virus-transformed lymphoblast and primary skin fibroblast cells. The 14q21.1 breakpoint was found to be located between a cluster of 7 genes 0.1 Mb upstream, starting with FBXO33, and the single and isolated LRFN5 gene 2.1 Mb downstream. Only expression of LRFN5 appeared to be affected by its novel genomic context. In patient fibroblasts, LRFN5 expression was 10-fold reduced compared to LRFN5 expressed in control fibroblasts. In addition, a relative increase in trimethylated histone H3 lysine 9 (H3K9M3)-associated DNA starting exactly at the translocation breakpoint and going 2.5 Mb beyond the LRFN5 gene was found. At the LRFN5 promoter, there was a distinct peak of trimethylated histone H3 lysine 27 (H3K27M3)-associated DNA in addition to a diminished trimethylated histone H3 lysine 4 (H3K4M3) level. We speculate that dysregulation of LRFN5, a postsynaptic density-associated gene, may contribute to the patient’s autism, even though 2 other patients with 14q13.2q21.3 deletions that included LRFN5 were not autistic. More significantly, we have shown that translocations may influence gene expression more than 2 Mb away from the translocation breakpoint.
PLOS ONE | 2012
Marieke de Vries; Sanne Vosters; Gerard Merkx; K.W.M. D'Hauwers; Derick G. Wansink; L. Ramos; Peter de Boer
In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.