Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerard Muyzer is active.

Publication


Featured researches published by Gerard Muyzer.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1998

Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology

Gerard Muyzer; Kornelia Smalla

Here, the state of the art of the application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology will be presented. Furthermore, the potentials and limitations of these techniques will be discussed, and it will be indicated why their use in ecological studies has become so important.


Nature | 1999

Missing lithotroph identified as new planctomycete

Marc Strous; John A. Fuerst; Evelien H. M. Kramer; Susanne Logemann; Gerard Muyzer; Katinka van de Pas-Schoonen; Richard I. Webb; J. Gijs Kuenen; Mike S. M. Jetten

With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation (‘anammox’) is one of the most innovative technological advances in the removal of ammonia nitrogen from waste water,. This new process combines ammonia and nitrite directly into dinitrogen gas. Until now, bacteria capable of anaerobically oxidizing ammonia had never been found and were known as “lithotrophs missing from nature”. Here we report the discovery of this missing lithotroph and its identification as a new, autotrophic member of the order Planctomycetales, one of the major distinct divisions of the Bacteria. The new planctomycete grows extremely slowly, dividing only once every two weeks. At present, it cannot be cultivated by conventional microbiological techniques. The identification of this bacterium as the one responsible for anaerobic oxidation of ammonia makes an important contribution to the problem of unculturability.


Archives of Microbiology | 1995

Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments.

Gerard Muyzer; Andreas Teske; Carl O. Wirsen; Holger W. Jannasch

Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments was used to explore the genetic diversity of hydrothermal vent microbial communities, specifically to determine the importance of sulfur-oxidizing bacteria therein. DGGE analysis of two different hydrothermal vent samples revealed one PCR band for one sample and three PCR bands for the other sample, which probably correspond to the dominant bacterial populations in these communities. Three of the four 16S rDNA fragments were sequenced. By comparison with 16S rRNA sequences of the Ribosomal Database Project, two of the DGGE-separated fragments were assigned to the genusThiomicrospira. To identify these ‘phylotypes’ in more detail, a phylogenetic framework was created by determining the nearly complete 16S rRNA gene sequence (approx. 1500 nucleotides) from three describedThiomicrospira species, viz.,Tms. crunogena, Tms. pelophila, Tms. denitrificans, and from a new isolate,Thiomicrospira sp. strain MA2-6. AllThiomicrospira species exceptTms. denitrificans formed a monophyletic group within the gamma subdivision of the Proteobacteria.Tms. denitrificans was assigned as a member of the epsilon subdivision and was distantly affiliated withThiovulum, another sulfur-oxidizing bacterium. Sequences of two dominant 16S rDNA fragments obtained by DGGE analysis fell into the gamma subdivisionThiomicrospira. The sequence of one fragment was in all comparable positions identical to the 16S rRNA sequence ofTms. crunogena. Identifying a dominant molecular isolate asTms. crunogena indicates that this species is a dominant community member of hydrothermal vent sites. Another ‘phylotype’ represented a newThiomicrospira species, phylogenetically in an intermediate position betweenTms. crunogena andTms. pelophila. The third ‘phylotype’ was identified as aDesulfovibrio, indicating that sulfate-reducing bacteria, as sources of sulfide, may complement sulfur- and sulfide-oxidizing bacteria ecologically in these sulfide-producing hydrothermal vents.


Nature Reviews Microbiology | 2008

The ecology and biotechnology of sulphate-reducing bacteria

Gerard Muyzer; Alfons J. M. Stams

Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.


Current Opinion in Microbiology | 1999

DGGE/TGGE a method for identifying genes from natural ecosystems

Gerard Muyzer

Five years after the introduction of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis (TGGE) in environmental microbiology these techniques are now routinely used in many microbiological laboratories worldwide as molecular tools to compare the diversity of microbial communities and to monitor population dynamics. Recent advances in these techniques have demonstrated their importance in microbial ecology.


Applied and Environmental Microbiology | 2000

Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis

Emilio O. Casamayor; Hendrik Schäfer; Lluís Bañeras; Carlos Pedrós-Alió; Gerard Muyzer

ABSTRACT The microbial assemblages of Lake Cisó and Lake Vilar (Banyoles, northeast Spain) were analyzed in space and time by microscopy and by performing PCR-denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 16S rRNA gene fragments. Samples obtained from different water depths and at two different times of the year (in the winter during holomixis and in the early spring during a phytoplankton bloom) were analyzed. Although the lakes have the same climatic conditions and the same water source, the limnological parameters were different, as were most of the morphologically distinguishable photosynthetic bacteria enumerated by microscopy. The phylogenetic affiliations of the predominant DGGE bands were inferred by performing a comparative 16S rRNA sequence analysis. Sequences obtained from Lake Cisó samples were related to gram-positive bacteria and to members of the divisionProteobacteria. Sequences obtained from Lake Vilar samples were related to members of theCytophaga-Flavobacterium-Bacteroides phylum and to cyanobacteria. Thus, we found that like the previously reported differences between morphologically distinct inhabitants of the two lakes, there were also differences among the community members whose morphologies did not differ conspicuously. The changes in the species composition from winter to spring were also marked. The two lakes both contained sequences belonging to phototrophic green sulfur bacteria, which is consistent with microscopic observations, but these sequences were different from the sequences of cultured strains previously isolated from the lakes. Euryarchaeal sequences (i.e., methanogen- and thermoplasma-related sequences) also were present in both lakes. These euryarchaeal group sequences dominated the archaeal sequences in Lake Cisó but not in Lake Vilar. In Lake Vilar, a new planktonic population related to the crenarchaeota produced the dominant archaeal band. The phylogenetic analysis indicated that new bacterial and archaeal lineages were present and that the microbial diversity of these assemblages was greater than previously known. We evaluated the correspondence between the abundances of several morphotypes and DGGE bands by comparing microscopy and sequencing results. Our data provide evidence that the sequences obtained from the DGGE fingerprints correspond to the microorganisms that are actually present at higher concentrations in the natural system.


Methods in Microbiology | 2001

Denaturing gradient gel electrophoresis in marine microbial ecology

Hendrik Schäfer; Gerard Muyzer

Publisher Summary Genetic fingerprinting techniques are excellently suited to comparison of large numbers of samples. Genetic fingerprinting of microbial communities provides banding patterns or profiles that reflect the genetic diversity of the community. Denaturing gradient gel electrophoresis (DGGE) of PCRamplified gene fragments is one of the genetic fingerprinting techniques used in microbial ecology. In DGGE, similar-sized DNA fragments are separated in a gradient of DNA denaturants according to differences in sequence. A variant of DGGE, temperature gradient gel electrophoresis (TGGE), makes use of a temperature gradient to separate gene fragments. DGGE is relatively easy to perform and is especially suited to the analysis of multiple samples. Since its introduction into microbial ecology, it has been adapted in many laboratories as a convenient tool for the assessment of microbial diversity in natural samples. It has been shown by several studies that the approach is reproducible and sensitive. Other new fingerprinting techniques, such as automated T-RFLP might be more sensitive but identification of predominant community members still requires cloning and sequencing of PCR products. A potential future development in PCR-DGGE fingerprinting might be to use fluorescently labelled PCR primers, which might (1) make staining of gels unnecessary, and (2) make it possible to add intra-lane standards with a different fluorochrome, facilitating gel-to-gel comparisons.


Biotechnology and Bioengineering | 2008

The membrane bioreactor: A novel tool to grow anammox bacteria as free cells

Wouter R.L. van der Star; Andreea I. Miclea; Udo van Dongen; Gerard Muyzer; Cristian Picioreanu; Mark C.M. van Loosdrecht

In a membrane bioreactor (MBR), fast growth of anammox bacteria was achieved with a sludge residence time (SRT) of 12 days. This relatively short SRT resulted in a—for anammox bacteria—unprecedented purity of the enrichment of 97.6%. The absence of a selective pressure for settling, and dedicated cultivation conditions led to growth in suspension as free cells and the complete absence of flocs or granules. Fast growth, low levels of calcium and magnesium, and possibly the presence of yeast extract and a low shear stress are critical for the obtainment of a completely suspended culture consisting of free anammox cells. During cultivation, a population shift was observed from Candidatus “Brocadia” to Candidatus “Kuenenia stuttgartiensis.” It is hypothesized that the reason for this shift is the higher affinity for nitrite of “Kuenenia.” The production of anammox bacteria in suspension with high purity and productivity makes the MBR a promising tool for the cultivation and study of anammox bacteria. Biotechnol. Bioeng. 2008;101: 286–294.


Archives of Microbiology | 1998

The phylogeny of unicellular, extremely halotolerant cyanobacteria

Ferran Garcia-Pichel; Ulrich Nübel; Gerard Muyzer

Abstract We examined the morphology, physiology, and 16S rRNA gene sequences of three culture collection strains and of ten novel isolates of unicellular cyanobacteria from hypersaline environments. The strains were morphologically diverse, with average cell widths ranging from 2.8 to 10.3 μm. There were single-celled, colonial, and baeocyte-forming strains. However, morphological traits were markedly variable with culture conditions. In contrast, all strains displayed extreme halotolerance (growing close to optimally at above 12% salinity); all were obligately marine, euryhaline, and moderately thermophilic; and all shared a suite of chemotaxonomic markers including phycobilins, carotenoids, and mycosporine-like amino acids. 16S rRNA gene sequence analysis indicated that the strains were related to each other. Sequence similarity analysis placed the strains in a monophyletic cluster (which we named the Halothece cluster) apart from all cultured or uncultured, not extremely halotolerant cyanobacteria whose 16S rRNA gene sequences are available in public nucleotide sequence databases. This represents the first case in which a phylogenetically coherent group of cyanobacteria can be defined on the basis of physiology. The Halothece cluster contained two subclusters that may be divergent at the generic level, one encompassing 12 strains (spanning 5% 16S rRNA gene sequence divergence and named the Euhalothece subcluster), and a single deep-branching isolate. Phenotypic characterization of the isolates, including morphological, physiological, and chemotaxonomic traits, did not distinguish these subclusters and only weakly suggested the existence of two separate clades, one encompassing strains of small cell size (cell width < 5 m) and another one encompassing strains of larger cell size.


Biomacromolecules | 2009

Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity

Katja Johnson; Yang Jiang; Robbert Kleerebezem; Gerard Muyzer; Mark C.M. van Loosdrecht

Polyhydroxyalkanoates (PHAs) are microbial storage polymers that attract interest as bioplastics. PHAs can be produced with open mixed cultures if a suitable enrichment step based on the ecological role of PHA is used. An acetate-fed sequencing batch reactor operated with 1 day biomass residence time and with feast-famine cycles of 12 h was used to enrich a mixed culture of PHA producers. In subsequent fed-batch experiments under growth limiting conditions, the enriched mixed culture produced PHA up to a cellular content of 89 wt % within 7.6 h (average rate of 1.2 g/g/h). The PHA produced from acetate was the homopolymer polyhydroxybutyrate. The culture was dominated by a Gammaproteobacterium that showed little similarity on 16S rRNA level with known bacteria (<90% sequence similarity). The mixed culture process for PHA production does not require aseptic conditions. Waste streams rather than pure substrates could be used as raw materials.

Collaboration


Dive into the Gerard Muyzer's collaboration.

Top Co-Authors

Avatar

Dimitry Y. Sorokin

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ben Abbas

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tatjana P. Tourova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Y. Sorokin

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Gijs Kuenen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robbert Kleerebezem

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tanja Woyke

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Alfons J. M. Stams

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge