Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerard T. Redpath is active.

Publication


Featured researches published by Gerard T. Redpath.


The Journal of Neuroscience | 2009

ADAM-10-Mediated N-Cadherin Cleavage Is Protein Kinase C-α Dependent and Promotes Glioblastoma Cell Migration

Zachary A. Kohutek; Charles G. diPierro; Gerard T. Redpath; Isa M. Hussaini

MMPs (matrix metalloproteinases) and the related “a disintegrin and metalloproteinases” (ADAMs) promote tumorigenesis by cleaving extracellular matrix and protein substrates, including N-cadherin. Although N-cadherin is thought to regulate cell adhesion, migration, and invasion, its role has not been characterized in glioblastomas (GBMs). In this study, we investigated the expression and function of posttranslational N-cadherin cleavage in GBM cells as well as its regulation by protein kinase C (PKC). N-Cadherin cleavage occurred at a higher level in glioblastoma cells than in non-neoplastic astrocytes. Treatment with the PKC activator phorbol 12-myristate 13-acetate (PMA) increased N-cadherin cleavage, which was reduced by pharmacological inhibitors and short interfering RNA (siRNA) specific for ADAM-10 or PKC-α. Furthermore, treatment of GBM cells with PMA induced the translocation of ADAM-10 to the cell membrane, the site at which N-cadherin was cleaved, and this translocation was significantly reduced by the PKC-α inhibitor Gö6976 [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole] or PKC-α short hairpin RNA. In functional studies, N-cadherin cleavage was required for GBM cell migration, as depletion of N-cadherin cleavage by N-cadherin siRNA, ADAM-10 siRNA, or a cleavage-site mutant N-cadherin, decreased GBM cell migration. Together, these results suggest that N-cadherin cleavage is regulated by a PKC-α–ADAM-10 cascade in GBM cells and may be involved in mediating GBM cell migration.


Journal of Biological Chemistry | 2000

Phorbol 12-Myristate 13-Acetate Induces Protein Kinase Cη-specific Proliferative Response in Astrocytic Tumor Cells

Isa M. Hussaini; Larry R. Karns; Griffith Vinton; Joan E. Carpenter; Gerard T. Redpath; Julianne J. Sando; Scott R. VandenBerg

Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-η expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (α, βI, βII, and γ) and novel (θ and ε) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-η, was only expressed by U-251 MG cells. In contrast, PKC-δ was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-η was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-η cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 μm) and the MEK inhibitor, PD 98059 (50 μm). Transient transfection of wild type U-251 with PKC-η antisense oligonucleotide (1 μm) also blocked the PMA-induced increase in [3H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-η plays a determining role in the different proliferative capacity.


American Journal of Pathology | 2010

An Extensive Invasive Intracranial Human Glioblastoma Xenograft Model : Role of High Level Matrix Metalloproteinase 9

Yunge Zhao; Aizhen Xiao; Charles G. diPierro; Joan E. Carpenter; Rana Abdel-Fattah; Gerard T. Redpath; Maria-Beatriz Lopes; Isa M. Hussaini

The lack of an intracranial human glioma model that recapitulates the extensive invasive and hypervascular features of glioblastoma (GBM) is a major hurdle for testing novel therapeutic approaches against GBM and studying the mechanism of GBM invasive growth. We characterized a high matrix metalloproteinase-9 (MMP-9) expressing U1242 MG intracranial xenograft mouse model that exhibited extensive individual cells and cell clusters in a perivascular and subpial cellular infiltrative pattern, geographic necrosis and infiltrating tumor-induced vascular proliferation closely resembling the human GBM phenotype. MMP-9 silencing cells with short hairpin RNA dramatically blocked the cellular infiltrative pattern, hypervascularity, and cell proliferation in vivo, and decreased cell invasion, colony formation, and cell motility in vitro, indicating that a high level of MMP-9 plays an essential role in extensive infiltration and hypervascularity in the xenograft model. Moreover, epidermal growth factor (EGF) failed to stimulate MMP-9 expression, cell invasion, and colony formation in MMP-9-silenced clones. An EGF receptor (EGFR) kinase inhibitor, a RasN17 dominant-negative construct, MEK and PI3K inhibitors significantly blocked EGF/EGFR-stimulated MMP-9, cell invasion, and colony formation in U1242 MG cells, suggesting that MMP-9 is involved in EGFR/Ras/MEK and PI3K/AKT signaling pathway-mediated cell invasion and anchorage-independent growth in U1242 MG cells. Our data indicate that the U1242 MG xenograft model is valuable for studying GBM extensive invasion and angiogenesis as well as testing anti-invasive and anti-angiogenic therapeutic approaches.


Neuro-oncology | 2002

Protein kinase C-η regulates resistance to UV- and γ-irradiation-induced apoptosis in glioblastoma cells by preventing caspase-9 activation

Isa M. Hussaini; Joan E. Carpenter; Gerard T. Redpath; Julianne J. Sando; Mark E. Shaffrey; Scott R. VandenBerg

Both increased cell proliferation and apoptosis play important roles in the malignant growth of glioblastomas. We have demonstrated recently that the differential expression of protein kinase C (PKC)-eta increases the proliferative capacity of glioblastoma cells in culture; however, specific functions for this novel PKC isozyme in the regulation of apoptosis in these tumors has not been defined. In the present study of several glioblastoma cell lines, we investigated the role of PKC-eta in preventing UV- and gamma-irradiation-induced apoptosis and in caspase-dependent signaling pathways that mediate cell death. Exposure to UV or gamma irradiation killed 80% to 100% of PKC-eta-deficient nonneoplastic human astrocytes and U-1242 MG cells, but had little effect on the PKC-eta-expressing U-251 MG and U-373 MG cells. PKC-eta appears to mediate resistance to irradiation specifically such that when PKC-eta was stably expressed in U-1242 MG cells, more than 80% of these cells developed resistance to irradiation-induced apoptosis. Reducing PKC-eta expression by transient and stable expression of antisense PKC-eta in wild-type U-251 MG cells results in increased sensitivity to UV irradiation in a fashion similar to U-1242 MG cells and nonneoplastic astrocytes. Irradiation of PKC-eta-deficient glioblastoma cells resulted in the activation of caspase-9 and caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and a substantial increase in subdiploid DNA content that did not occur in PKC-eta-expressing tumor cells. A specific inhibitor (Ac-DEVD-CHO) of caspase-3 blocked apoptosis in PKC-eta-deficient U-1242 MG cells. The data demonstrate that resistance to UV and gamma irradiation in glioblastoma cell lines is modified significantly by PKC-eta expression and that PKC-eta appears to block the apoptotic cascade at caspase-9 activation.


Cancer Research | 2007

Protein Kinase C-α–Mediated Regulation of Low-Density Lipoprotein Receptor–Related Protein and Urokinase Increases Astrocytoma Invasion

Samson Amos; Melike Mut; Charles G. diPierro; Joan E. Carpenter; Aizhen Xiao; Zachary A. Kohutek; Gerard T. Redpath; Yunge Zhao; Jiahu Wang; Mark E. Shaffrey; Isa M. Hussaini

Aggressive and infiltrative invasion is one of the hallmarks of glioblastoma. Low-density lipoprotein receptor-related protein (LRP) is expressed by glioblastoma, but the role of this receptor in astrocytic tumor invasion remains poorly understood. We show that activation of protein kinase C-alpha (PKC-alpha) phosphorylated and down-regulated LRP expression. Pretreatment of tumor cells with PKC inhibitors, phosphoinositide 3-kinase (PI3K) inhibitor, PKC-alpha small interfering RNA (siRNA), and short hairpin RNA abrogated phorbol 12-myristate 13-acetate-induced down-regulation of LRP and inhibited astrocytic tumor invasion in vitro. In xenograft glioblastoma mouse model and in vitro transmembrane invasion assay, LRP-deficient cells, which secreted high levels of urokinase-type plasminogen activator (uPA), invaded extensively the surrounding normal brain tissue, whereas the LRP-overexpressing and uPA-deficient cells did not invade into the surrounding normal brain. siRNA, targeted against uPA in LRP-deficient clones, attenuated their invasive potential. Taken together, our results strongly suggest the involvement of PKC-alpha/PI3K signaling pathways in the regulation of LRP-mediated astrocytoma invasion. Thus, a strategy of combining small molecule inhibitors of PKC-alpha and PI3K could provide a new treatment paradigm for glioblastomas.


Journal of Receptors and Signal Transduction | 1992

Elimination of Ascorbic Acid-Induced Membrane Lipid Peroxidation and Serotonin Receptor Loss by Trolox-c, A Water Soluble Analogue of Vitamin E

Steven G. Britt; Vincent W. S. Chiu; Gerard T. Redpath; Scott R. VandenBerg

Ascorbic acid is commonly used as an antioxidant to prevent the decomposition of ligands in neurotransmitter receptor studies, but may alter biological membranes by initiating lipid peroxidation in the presence of physiologic metal ions. The aim of the present study was to characterize the effect of ascorbic acid-induced lipid peroxidation on an applicable membrane receptor and to examine an appropriate antioxidant system. Ascorbic acid generated significant lipid peroxidation (5.5 to 45 fold increase in malonaldehyde levels) in three diverse tissues having different membrane properties: bovine brain, mouse teratoma, and rat kidney. In membranes from bovine cerebral cortex, ascorbate-induced lipid peroxidation was associated with a 26% decrease in [3H]-serotonin receptor binding (Bmax = 159 +/- 11 from control of 216 +/- 10 fmol/mg protein), with no significant change in KD. Trolox-C, a water soluble analogue of vitamin E, completely blocked the ascorbate-induced loss of serotonin receptor binding in brain membranes, and the combination of Trolox-C and ascorbate prevented [3H]-serotonin decomposition in solution. Trolox-C also prevented ascorbate-induced lipid peroxidation in brain, teratoma, and kidney membranes. Lipid peroxidation may be a significant factor in the ascorbate-induced alteration of brain membranes as reflected by reduced binding to serotonin receptors. The combination of Trolox-C (200 microM) and ascorbic acid (1.0 mM) maintains a protective environment for oxygen sensitive neurotransmitters while blocking the deleterious effects of ascorbic acid on lipid membranes.


Brain Research | 1989

Modulatory effects of aluminum, calcium, lithium, magnesium, and zinc ions on [ 3H]MK-801 binding in human cerebral cortex

Claire M. Hubbard; Gerard T. Redpath; Timothy L. Macdonald; Scott R. VandenBerg

The independent and combined effects of Ca2+, Mg2+, Zn2+, Al3+ and Li+ on [3H]MK-801 binding in human cerebral cortical membranes were studied to further characterize the modulatory effects of metal ions on the N-methyl-D-aspartate (NMDA) receptor-ionophore. Glycine, in the presence of glutamate, significantly intensified the Mg2+ inhibition of [3H]MK-801 binding whereas it masked the Ca2+ enhancement and slightly diminished the Zn2+ inhibition. Both Ca2+ and Mg2+ reduced the Zn2+ inhibitory potency. Aluminum demonstrated a potent, relatively glycine-insensitive inhibition of [3H]MK-801 binding as an amorphous Al(OH)3 polymer rather than as the free ion. Cationic modulation of the NMDA receptor-ionophore appears to be regulated at multiple sites which have significant allosteric interactions.


Cell Death & Differentiation | 2006

Farnesylthiosalicylic acid induces caspase activation and apoptosis in glioblastoma cells

Samson Amos; Gerard T. Redpath; G. Polar; R. McPheson; David Schiff; Isa M. Hussaini

Primary glioblastomas (GBMs) commonly overexpress the oncogene epidermal growth factor receptor (EGFR), which leads to increased Ras activity. FTA, a novel Ras inhibitor, produced both time- and dose-dependent caspase-mediated apoptosis in GBM cell lines. EGFR-mediated increase in 3H-thymidine uptake was inhibited by FTA. FACS analysis was performed to determine the percent of apoptotic cells. The sub-Go population of GBM cells was increased from 4.5 to 13.8% (control) to over 45–53.6% in FTA-treated cells within 24 h. Furthermore, FTA also increased the activities of both caspase-3 and -9, and PARP cleavage. Treatment of GBMs with FTA before or after EGF addition to the cultures blocked phosphorylation of Akt and mitogen-activated protein kinases (MAPK). FTA also significantly reduced the amount of EGF-induced Ras-GTP as reflected by a decrease in the level of Ras bound to Raf-RBD-GST. This study demonstrates that inhibition of Ras methylation may provide a therapeutic target for the treatment of GBMs overexpressing EGFR.


Journal of Neuropathology and Experimental Neurology | 2010

Epidermal Growth Factor Receptor-Mediated Regulation of Urokinase Plasminogen Activator Expression and Glioblastoma Invasion via C-SRC/MAPK/AP-1 Signaling Pathways

Samson Amos; Gerard T. Redpath; Charles G. diPierro; Joan E. Carpenter; Isa M. Hussaini

One of the major pathophysiological features of malignant astrocytomas is their ability to infiltrate surrounding brain tissue. The epidermal growth factor receptor (EGFR) and proteases are known to be overexpressed in glioblastomas (GBMs), but the interaction between the activation of the EGFR and urokinase plasminogen activator (uPA) in promoting astrocytic tumor invasion has not been fully elucidated. Here, we characterized the signal transduction pathway(s) by which EGF regulates uPA expression and promotes astrocytoma invasion. We show that EGFR activation and constitutively active EGFR vIII in GBM cell lines upregulate uPA expression. Small-molecule inhibitors of mitogen-activated protein kinase, tyrosine kinase, and small interfering RNA targeting c-Src blocked uPA upregulation. Similarly, mutations in the activator protein 1 binding site of the uPA promoter reduced EGF-induced increases in uPA promoter activity. Treatment of GBM cells with EGF increased in vitro cell invasion, and the invasive phenotype was attenuated by gene silencing of uPA using small interfering RNA and short hairpin RNA. In addition, uPA knockdown clones formed smaller well-circumscribed tumors than nontarget U1242 control cells in a xenograft GBM mouse model in vivo. In summary, these results suggest that c-Src, mitogen-activated protein kinase, and a composite activator protein 1 on the uPA promoter are responsible for EGF-induced uPA expression and GBM invasion.


Journal of Neuroscience Methods | 2006

Mitochondrial DNA depletion analysis by pseudogene ratioing

Russell H. Swerdlow; Gerard T. Redpath; Daniel R. Binder; John N. Davis; Scott R. VandenBerg

The mitochondrial DNA (mtDNA) depletion status of rho(0) cell lines is typically assessed by hybridization or polymerase chain reaction (PCR) experiments, in which the failure to hybridize mtDNA or amplify mtDNA using mtDNA-directed primers suggests thorough mitochondrial genome removal. Here, we report the use of an mtDNA pseudogene ratioing technique for the additional confirmation of rho0 status. Total genomic DNA from a U251 human glioma cell line treated with ethidium bromide was amplified using primers designed to anneal either mtDNA or a previously described nuclear DNA-embedded mtDNA pseudogene (mtDNApsi). The resultant PCR product was used to generate plasmid clones. Sixty-two plasmid clones were genotyped, and all arose from mtDNApsi template. These data allowed us to determine with 95% confidence that the resultant mtDNA-depleted cell line contains less than one copy of mtDNA per 10 cells. Unlike previous hybridization or PCR-based analyses of mtDNA depletion, this mtDNApsi ratioing technique does not rely on interpretation of a negative result, and may prove useful as an adjunct for the determination of rho0 status or mtDNA copy number.

Collaboration


Dive into the Gerard T. Redpath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samson Amos

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Aizhen Xiao

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunge Zhao

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Edward R. Laws

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge