Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerard W. O'Keeffe is active.

Publication


Featured researches published by Gerard W. O'Keeffe.


Nature Neuroscience | 2008

Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor

Thomas Neill Vizard; Gerard W. O'Keeffe; Humberto Gutierrez; Claudine H. Kos; Daniela Riccardi; Alun M. Davies

The extracellular calcium-sensing receptor (CaSR) monitors the systemic, extracellular, free ionized-calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, CaSR is also expressed in the nervous system, where its role is unknown. We found large amounts of CaSR in perinatal mouse sympathetic neurons when their axons were innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists, or expressing a dominant-negative CaSR markedly affected neurite growth in vitro. Sympathetic neurons lacking CaSR had smaller neurite arbors in vitro, and sympathetic innervation density was reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express CaSR, had smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for CaSR in regulating the growth of neural processes in the peripheral and central nervous systems.


Journal of Neurochemistry | 2013

Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management.

Laura McKelvey; George D. Shorten; Gerard W. O'Keeffe

Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target‐derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect ones ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti‐NGF therapy for the clinical management of pain.


Brain | 2008

Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease

Fiona E. OKeeffe; Sarah A. Scott; Pam Tyers; Gerard W. O'Keeffe; Jeffrey W. Dalley; Romain Zufferey; Maeve A. Caldwell

Neural stem cells (NSCs) are widely endorsed as a cell source for replacement strategies in neurodegenerative disease. However, their usefulness is currently limited by the inability to induce specific neurotransmitter phenotypes in these cells. In order to direct dopaminergic neuronal fate, we overexpressed Pitx3 in NSCs that were then exposed to E11 developing ventral mesencephalon (VM) in explant culture. This resulted in a significant potentiation of dopaminergic differentiation of the cells. When transplanted into the 6-hydroxydopamine lesioned Parkinsonian rats, these cografts of VM and Pitx3 overexpressing NSCs resulted in a significant restitution of motor function. In addition, there were greater numbers of Girk2 positive A9 neurons in the periphery of the transplants that were NSC derived. This demonstrates that given the correct signals, NSCs can be induced to become dopaminergic neurons that can differentiate into the correct nigrastriatal phenotype required for the treatment of Parkinsons disease.


The Journal of Neuroscience | 2008

Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA.

Humberto Gutierrez; Gerard W. O'Keeffe; Núria Gavaldà; Denis Gallagher; Alun M. Davies

Nuclear factor κB (NF-κB) signaling is known to promote neurite growth from developing sensory neurons and to enhance the size and complexity of pyramidal neuron dendritic arbors in the developing cerebral cortex. In marked contrast, here we show that NF-κB signaling can also exert a potent inhibitory influence on neurite growth in certain neurons, and can either promote or inhibit neurite growth in the same neurons depending on the mechanism of NF-κB activation. In neonatal superior cervical ganglion sympathetic neurons, enhancing NF-κB transcriptional activity by overexpressing either the p65 NF-κB subunit or the IκB kinase-β (IKKβ) subunit of the IκB kinase complex, or by tumor necrosis factor α (TNFα) treatment, strongly inhibits neurite growth. Paradoxically in neonatal nodose ganglion sensory neurons, enhancing NF-κB transcriptional activity by p65/p50 overexpression increases neurite growth, whereas enhancing NF-κB transcriptional activity by IKKβ overexpression inhibits neurite growth. In addition to activating NF-κB, IKKβ overexpression leads to phosphorylation of p65 on serine 536. Blockade of serine 536 phosphorylation by a S536A-p65 mutant protein prevents the growth-inhibitory effects of IKKβ overexpression in both sensory and sympathetic neurons and the growth-inhibitory effects of TNFα on sympathetic neurons. Furthermore, expression of a p65 S536D phosphomimetic mutant inhibits neurite growth from sensory neurons. These results demonstrate that NF-κB can either stimulate or inhibit neurite growth in developing neurons depending on the phosphorylation status of p65.


Molecular and Cellular Neuroscience | 2012

A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells.

Holly F. Green; Eimear Treacy; Aoife Keohane; Aideen M. Sullivan; Gerard W. O'Keeffe; Yvonne M. Nolan

Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimers disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.


Developmental Biology | 2013

Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development.

Shane V. Hegarty; Aideen M. Sullivan; Gerard W. O'Keeffe

Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons from stem cell sources for cell transplantation approaches to Parkinsons disease (PD). This review discusses the molecular processes that are involved in the identity, specification, maturation, target innervation and survival of VM DA neurons during development. The complex molecular interactions of a number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell replacement therapy for the treatment of PD.


The Journal of Neuroscience | 2007

Nuclear factor-kappaB activation via tyrosine phosphorylation of inhibitor kappaB-alpha is crucial for ciliary neurotrophic factor-promoted neurite growth from developing neurons

Denis Gallagher; Humberto Gutierrez; Núria Gavaldà; Gerard W. O'Keeffe; Ronald T. Hay; Alun M. Davies

The cytokine ciliary neurotrophic factor (CNTF) promotes the growth of neural processes from many kinds of neurons in the developing and regenerating adult nervous system, but the intracellular signaling mechanisms mediating this important function of CNTF are poorly understood. Here, we show that CNTF activates the nuclear factor-κB (NF-κB) transcriptional system in neonatal sensory neurons and that blocking NF-κB-dependent transcription inhibits CNTF-promoted neurite growth. Selectively blocking NF-κB activation by the noncanonical pathway that requires tyrosine phosphorylation of inhibitor κB-α (IκB-α), but not by the canonical pathway that requires serine phosphorylation of IκB-α, also effectively inhibits CNTF-promoted neurite growth. CNTF treatment activates spleen tyrosine kinase (SYK) whose substrates include IκB-α. CNTF-induced SYK phosphorylation is rapidly followed by increased tyrosine phosphorylation of IκB-α, and blocking SYK activation or tyrosine phosphorylation of IκB-α prevents CNTF-induced NF-κB activation and CNTF-promoted neurite growth. These findings demonstrate that NF-κB signaling by an unusual activation mechanism is essential for the ability of CNTF to promote the growth of neural processes in the developing nervous system.


Nature Neuroscience | 2008

NGF-promoted axon growth and target innervation requires GITRL-GITR signaling.

Gerard W. O'Keeffe; Humberto Gutierrez; Pier Paolo Pandolfi; Carlo Riccardi; Alun M. Davies

Nerve growth factor (NGF) has an important role in regulating sympathetic neuron survival and target field innervation during development. Here we show that glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR), a member of the TNF superfamily, and its ligand (GITRL) are co-expressed in mouse sympathetic neurons when their axons are innervating their targets under the influence of target-derived NGF. In culture, GITRL enhanced NGF-promoted neurite growth from neonatal sympathetic neurons, and preventing GITR-GITRL interaction in these neurons or knocking down GITR inhibited NGF-promoted neurite growth without affecting neuronal survival. Tnfrsf18−/− (Gitr) neonates have reduced sympathetic innervation density in vivo compared with Gitr+/+ littermates. GITR activation is required for the phosphorylation of extracellular signal–regulated kinases 1 and 2 by NGF that is necessary for neurite growth. Our results reveal a previously unknown signaling loop in developing sympathetic neurons that is crucial for NGF-dependent axon growth and target innervation.


Anatomical Sciences Education | 2016

Anatomy education for the YouTube generation

Denis S. Barry; Fadi Marzouk; Kyrylo Chulak-Oglu; Deirdre Bennett; Paul Tierney; Gerard W. O'Keeffe

Anatomy remains a cornerstone of medical education despite challenges that have seen a significant reduction in contact hours over recent decades; however, the rise of the “YouTube Generation” or “Generation Connected” (Gen C), offers new possibilities for anatomy education. Gen C, which consists of 80% Millennials, actively interact with social media and integrate it into their education experience. Most are willing to merge their online presence with their degree programs by engaging with course materials and sharing their knowledge freely using these platforms. This integration of social media into undergraduate learning, and the attitudes and mindset of Gen C, who routinely creates and publishes blogs, podcasts, and videos online, has changed traditional learning approaches and the student/teacher relationship. To gauge this, second year undergraduate medical and radiation therapy students (n = 73) were surveyed regarding their use of online social media in relation to anatomy learning. The vast majority of students had employed web‐based platforms to source information with 78% using YouTube as their primary source of anatomy‐related video clips. These findings suggest that the academic anatomy community may find value in the integration of social media into blended learning approaches in anatomy programs. This will ensure continued connection with the YouTube generation of students while also allowing for academic and ethical oversight regarding the use of online video clips whose provenance may not otherwise be known. Anat Sci Educ.


Molecular and Cellular Neuroscience | 2013

BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons.

Shane V. Hegarty; Aideen M. Sullivan; Gerard W. O'Keeffe

Parkinsons disease is the second most common neurodegenerative disease, and is characterised by the progressive degeneration of the nigrostriatal dopaminergic (DA) system. Current treatments are symptomatic, and do not protect against the DA neuronal loss. One of the most promising treatment approaches is the application of neurotrophic factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, the identification of new neurotrophic factors for midbrain DA neurons, and the subsequent elucidation of the molecular bases of their effects, are important. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth differentiation factor 5 (GDF5), have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. Using the SH-SH5Y human neuronal cell line, as a model of human midbrain DA neurons, we have shown that GDF5 and BMP2 induce neurite outgrowth via a direct mechanism. Furthermore, we demonstrate that these effects are dependent on BMP type I receptor activation of canonical Smad 1/5/8 signalling.

Collaboration


Dive into the Gerard W. O'Keeffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aoife Nolan

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge