Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerardo Avila is active.

Publication


Featured researches published by Gerardo Avila.


Monthly Notices of the Royal Astronomical Society | 2008

Cosmic dynamics in the era of Extremely Large Telescopes

J. Liske; Andrea Grazian; E. Vanzella; M. Dessauges; Matteo Viel; Luca Pasquini; Martin G. Haehnelt; S. Cristiani; Francisco Pepe; Gerardo Avila; P. Bonifacio; F. Bouchy; Hans Dekker; B. Delabre; Sandro D'Odorico; Valentina D'Odorico; S. A. Levshakov; Christophe Lovis; Michel Mayor; Paolo Molaro; L. Moscardini; Michael T. Murphy; D. Queloz; P. A. Shaver; S. Udry; T. Wiklind; Shay Zucker

The redshifts of all cosmologically distant sources are expected to experience a small, systematic drift as a function of time due to the evolution of the Universes expansion rate. A measurement of this effect would represent a direct and entirely model-independent determination of the expansion history of the Universe over a redshift range that is inaccessible to other methods. Here we investigate the impact of the next generation of Extremely Large Telescopes on the feasibility of detecting and characterising the cosmological redshift drift. We consider the Lyman alpha forest in the redshift range 2 < z < 5 and other absorption lines in the spectra of high redshift QSOs as the most suitable targets for a redshift drift experiment. Assuming photon-noise limited observations and using extensive Monte Carlo simulations we determine the accuracy to which the redshift drift can be measured from the Ly alpha forest as a function of signal-to-noise and redshift. Based on this relation and using the brightness and redshift distributions of known QSOs we find that a 42-m telescope is capable of unambiguously detecting the redshift drift over a period of ~20 yr using 4000 h of observing time. Such an experiment would provide independent evidence for the existence of dark energy without assuming spatial flatness, using any other cosmological constraints or making any other astrophysical assumption.


Proceedings of SPIE | 2010

ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations

F. Pepe; S. Cristiani; R. López; N. C. Santos; A. Amorim; Gerardo Avila; Willy Benz; P. Bonifacio; Alexandre Cabral; Pedro Carvas; R. Cirami; João Coelho; Maurizio Comari; Igor Coretti; Vincenzo De Caprio; Hans Dekker; Bernard Delabre; Paolo Di Marcantonio; Valentina D'Odorico; Michel Fleury; Ramon Güimil García; J. Linares; Ian Hughes; Olaf Iwert; Jorge Lima; Jean-Louis Lizon; Gaspare Lo Curto; Christophe Lovis; Antonio Manescau; Carlos Martins

ESPRESSO, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, will combine the efficiency of modern echelle spectrograph design with extreme radial-velocity precision. It will be installed on ESOs VLT in order to achieve a gain of two magnitudes with respect to its predecessor HARPS, and the instrumental radialvelocity precision will be improved to reach cm/s level. Thanks to its characteristics and the ability of combining incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in various fields of astronomy. The main scientific objectives will be the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs, and the analysis of the variability of fundamental physical constants. We will present the ambitious scientific objectives, the capabilities of ESPRESSO, and the technical solutions of this challenging project.


Astronomical Telescopes and Instrumentation | 2000

Performance report on FEROS, the new fiber-linked echelle spectrograph at the ESO 1.52-m telescope

Andreas Kaufer; Otmar Stahl; Sascha Tubbesing; Preben Norregaard; Gerardo Avila; Patrick Francois; Luca Pasquini; A. Pizzella

FEROS is a new fiber-fed bench-mounted prism-cross dispersed echelle spectrograph which has been recently commissioned at the ESO 1.52-m telescope at La Silla. The opto-mechanical concept and performance predictions have been presented by Kaufer and Pasquini. In this contribution we present the test results as obtained during two commissioning runs in October and December 1998. Special emphasis is given to the measured performance sin efficiency, spectral resolution, straylight contamination, and spectral stability. The definite highlight of the FEROS instrument performance is the high peak detection quantum efficiency of 17 percent at 550nm. These measured numbers include the 20mirror telescope, the fiber link, the instrument, and the detector while the whole wavelength range is covered by a single exposure on a thinned EEV 2k by 4k 15 micron pixel CCD and a constant resolving power of R equals 48.000. In addition the FEROS instrument proved its high spectral stability by radial-velocity observations as carried out on the known radial-velocity standard star (tau) Ceti over a time base of 2 months. By recording a calibration-lamp spectrum in parallel with the object spectrum and by the use of a simple cross-correlation technique, a rms of 21 m/s has been obtained for a data set of 130 individual measurements. FEROS has ben made available to the ESO community in January 1999.


Astronomical Telescopes and Instrumentation | 2000

FLAMES: a multi-object fiber facility for the VLT

Luca Pasquini; Gerardo Avila; Eric Allaert; Pascal Ballester; Peter Biereichel; Bernard Buzzoni; Cyril Cavadore; Hans Dekker; Bernard Delabre; Francesco R. Ferraro; V. Hill; Andreas Kaufer; Heinz Kotzlowski; J.-L. Lizon; Antonio Longinotti; S. Moureau; Ralf Palsa; S. Zaggia

FLAMES is a fiber facility to be installed on the A platform of the VLT Kueyen telescope, which can feed up to three spectrographs with fibers positioned over a corrected 25 arcminutes field of view. The initial configuration will include connections to the GIRAFFE and to the red arm of the UVES spectrographs, the latter, located on the Nasmyth B platform of the same telescope, is already in operation as a long slit stand alone instrument. The 8 fibers to UVES will give R approximately 45000 and a large spectral coverage, while GIRAFFE will be fed by 132 single fibers, or by 15 deployable integral field units or by one central large integral unit. GIRAFFE will be equipped with two gratings, giving R equals 5000-9000 and R equals 15000-25000 respectively. It will be possible to obtain GIRAFFE and UVES observations simultaneously. Special attention is paid to optimizing night operations and to providing appropriate data reduction. The instrument is rather complex and it is now in the construction phase; in addition to ESO, its realization has required the collaboration of several institutes grouped in 4 consortia.


Proceedings of SPIE | 2004

The exoplanet hunter HARPS: performance and first results

Gero Rupprecht; F. Pepe; Michel Mayor; D. Queloz; F. Bouchy; Gerardo Avila; Willy Benz; X. Bonfils; Th. Dall; Bernard Delabre; Hans Dekker; Wolfgang Eckert; Michel Fleury; Alain Gilliotte; Domingo Gojak; Juan Carlos Guzman; Dominique Kohler; Jean-Louis Lizon; G. Lo Curto; Antonio Longinotti; Christophe Lovis; Denis Mégevand; Luca Pasquini; Javier Reyes; J.-P. Sivan; Danuta Sosnowska; R. Soto; S. Udry; Arno van Kesteren; L. Weber

HARPS is a new high resolution fibre-fed spectrograph dedicated to the extremely precise measurement of stellar radial velocities. After being used for about one year including the commissioning runs we report a very successful implementation of the measures taken to maximise stability, efficiency and spectral performance. Using the Simultaneous ThAr Reference Method a short term precision of 0.2 m/s during one night and a long term precision of the order of 1 m/s have been achieved. Equipped with a fully automated data reduction pipeline that produces solar system barycentric radial velocities in near real-time, HARPS promises to deliver data of unequalled quality. HARPS will primarily be used for the search for exoplanets and in the field of asteroseismology. First exciting scientific results confirm these expectations.


Proceedings of SPIE | 2010

New scramblers for precision radial velocity: square and octagonal fibers

Bruno Chazelas; F. Pepe; F. Wildi; F. Bouchy; Sandrine Perruchot; Gerardo Avila

One of the remaining limitation of the precise radial velocity instruments is the imperfect scrambling produced by the circular fibers. We present here experimental studies on new optical fibers aiming at an improvement of the scrambling they provide. New fibers shapes were tested: square and octagonal. Measurements have been performed of the scrambling performances of these fibers in the near field as well FRD measurements. These fibers show extremely promising performances in the near field scrambling: an improvement of a factor 5 to 10 compared to the circular fiber. They however show some strange behavior in the far field that need to be understood.


Proceedings of SPIE | 2008

Optical fiber scrambling and light pipes for high accuracy radial velocities measurements

Gerardo Avila; Paul Singh

This paper reports results on scrambling gains with fibres and light pipes for linking telescopes to spectrographs aiming high accuracy measurements on radial velocities. The use of the so-called homogenizers is proposed as an alternative or in addition to increase the scrambling gain in optical and mechanical scramblers. The results on a light pipe to homogenize the flux of 4 fibres arranged on a line in order to get a uniform slit aperture is also reported


Proceedings of SPIE | 2011

Higher-precision radial velocity measurements with the SOPHIE spectrograph using octagonal-section fibers

Sandrine Perruchot; F. Bouchy; B. Chazelas; R. F. Díaz; G. Hébrard; K. Arnaud; Luc Arnold; Gerardo Avila; X. Delfosse; I. Boisse; Gabriel Moreaux; F. Pepe; Y. Richaud; A. Santerne; R. Sottile; D. Tézier

High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.


Proceedings of SPIE | 2004

VLTI technical advances: present and future

Andreas Glindemann; Maja Albertsen; Luigi Andolfato; Gerardo Avila; Pascal Ballester; Bertrand Bauvir; Francoise Delplancke; Frederic Derie; Martin Dimmler; Philippe Duhoux; Emmanuel di Folco; R. Frahm; Emmanuel Galliano; Bruno Gilli; Paul Giordano; Philippe B. Gitton; Stephane Guisard; Nico Housen; Christian A. Hummel; Alexis Huxley; Robert Karban; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Tom Licha; Antonio Longinotti; Derek J. McKay; Serge Menardi; Guy J. Monnet

The Very Large Telescope Interferometer (VLTI) on Cerro Paranal (2635 m) in Northern Chile reached a major milestone in September 2003 when the mid infrared instrument MIDI was offered for scientific observations to the community. This was only nine months after MIDI had recorded first fringes. In the meantime, the near infrared instrument AMBER saw first fringes in March 2004, and it is planned to offer AMBER in September 2004. The large number of subsystems that have been installed in the last two years - amongst them adaptive optics for the 8-m Unit Telescopes (UT), the first 1.8-m Auxiliary Telescope (AT), the fringe tracker FINITO and three more Delay Lines for a total of six, only to name the major ones - will be described in this article. We will also discuss the next steps of the VLTI mainly concerned with the dual feed system PRIMA and we will give an outlook to possible future extensions.


Astronomical Telescopes and Instrumentation | 2000

VIMOS and NIRMOS multi-object spectrographs for the ESO VLT

Oliver LeFevre; Michel Saisse; Dario Mancini; G. Vettolani; D. Maccagni; Jean P. Picat; Y. Mellier; A. Mazure; Jean Gabriel Cuby; Bernard Delabre; Bianca Garilli; Lucien Hill; Eric Prieto; Clothaire Voet; Luc Arnold; Sylvie Brau-Nogue; E. Cascone; Paolo Conconi; Gert Finger; Gotthard Huster; Andree Laloge; Christian Lucuix; E. Mattaini; Pietro Schipani; G. Waultier; Filippo Maria Zerbi; Gerardo Avila; James W. Beletic; Sandro D'Odorico; Alan F. M. Moorwood

The VIRMOS consortium of French and Italian Institutes is manufacturing 2 wide field imaging multi-object spectrographs for the European Southern Observatory Very Large Telescope, with emphasis on the ability to carry over spectroscopic surveys of large numbers of sources. The Visible Multi-Object Spectrograph, VIMOS, is covering the 0.37 to 1 micron wavelength domain, with a full field of view of 4 by 7 by 8 arcmin2 in imaging and MOS mode. The Near IR Multi-Object Spectrograph, NIRMOS, is covering the 0.9 to 1.8 microns wavelength range, with afield of view 4 by 6 by 8 arcmin2 in MOS mode. The spectral resolution for both instrument scan reach up to R equals 5000 for a 0.5 arcsec wide slit. Multi-slit masks are produced by a dedicated Mask Manufacturing Machine cutting through thin Invar sheets and capable of producing 4 slit masks approximately 300 by 300 mm each with approximately slits 5.7 mm long in less than one hour. Integral field spectroscopy is made possible in VIMOS by switching in the beam specially build masks fed by 6400 fibers coming form a 54 by 54 arcsec2 integral field head with a 80 by 80 array of silica micro-lenses. NIRMOS has a similar IFS unit with a field of 30 by 30 arcmin2. These instruments are designed to offer very large multiplexing capabilities. In MOS mode, about 1000 objects can be observed simultaneously with VIMOS, with a S/N equals 10 obtained on galaxies with I equals 24 in one hour, and approximately 200 objects can be observed simultaneously with NIRMOS, with a S/N equals 10 obtained don galaxies with J equals 22, H equals 20.6 in 1h at Req equals 200. We present here the status of VIMOS, currently under final integration, with expected first light in the summer 2000, together with the final design of NIRMOS presented at the Final Design Review. The VLT-VIRMOS deep redshift survey of more with the final design of NIRMOS presented at the Final Design Review. The VLT-VIRMOS deep redshift survey of more than 150000 galaxies over the redshift range 0 < z < 5 will be undertaken based on 120 guaranteed nights awarded to the project.

Collaboration


Dive into the Gerardo Avila's collaboration.

Top Co-Authors

Avatar

Hans Dekker

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Luca Pasquini

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

F. Pepe

University of Geneva

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Delabre

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

R. Rebolo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge