Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerardo Ferbeyre is active.

Publication


Featured researches published by Gerardo Ferbeyre.


Journal of Biological Chemistry | 2007

An E2F/miR-20a Autoregulatory Feedback Loop

Yannick Sylvestre; Vincent De Guire; Emmanuelle Querido; Utpal K. Mukhopadhyay; Véronique Bourdeau; François Major; Gerardo Ferbeyre; Pascal Chartrand

The E2F family of transcription factors is essential in the regulation of the cell cycle and apoptosis. While the activity of E2F1–3 is tightly controlled by the retinoblastoma family of proteins, the expression of these factors is also regulated at the level of transcription, post-translational modifications and protein stability. Recently, a new level of regulation of E2Fs has been identified, where micro-RNAs (miRNAs) from the mir-17–92 cluster influence the translation of the E2F1 mRNA. We now report that miR-20a, a member of the mir-17–92 cluster, modulates the translation of the E2F2 and E2F3 mRNAs via binding sites in their 3′-untranslated region. We also found that the endogenous E2F1, E2F2, and E2F3 directly bind the promoter of the mir-17–92 cluster activating its transcription, suggesting an autoregulatory feedback loop between E2F factors and miRNAs from the mir-17–92 cluster. Our data also point toward an anti-apoptotic role for miR-20a, since overexpression of this miRNA decreased apoptosis in a prostate cancer cell line, while inhibition of miR-20a by an antisense oligonucleotide resulted in increased cell death after doxorubicin treatment. This anti-apoptotic role of miR-20a may explain some of the oncogenic capacities of the mir-17–92 cluster. Altogether, these results suggest that the autoregulation between E2F1–3 and miR-20a is important for preventing an abnormal accumulation of E2F1–3 and may play a role in the regulation of cellular proliferation and apoptosis.


Molecular Cell | 2004

PML Is a Direct p53 Target that Modulates p53 Effector Functions

Elisa de Stanchina; Emmanuelle Querido; Masako Narita; Ramana V. Davuluri; Pier Paolo Pandolfi; Gerardo Ferbeyre; Scott W. Lowe

The p53 tumor suppressor promotes cell cycle arrest or apoptosis in response to stress. Previous work suggests that the promyelocytic leukemia gene (PML) can act upstream of p53 to enhance transcription of p53 targets by recruiting p53 to nuclear bodies (NBs). We show that PML is itself a p53 target gene that also acts downstream of p53 to potentiate its antiproliferative effects. Hence, p53 is required for PML induction in response to oncogenes and DNA damaging chemotherapeutics. Furthermore, the PML gene contains p53 binding sites that confer p53 responsiveness to a heterologous reporter and can bind p53 in vitro and in vivo. Finally, cells lacking PML show a reduced propensity to undergo senescence or apoptosis in response to p53 activation, despite the induction of several p53 target genes. These results identify an additional element of PML regulation and establish PML as a mediator of p53 tumor suppressor functions.


Molecular and Cellular Biology | 2002

Oncogenic ras and p53 Cooperate To Induce Cellular Senescence

Gerardo Ferbeyre; Elisa de Stanchina; Athena W. Lin; Emmanuelle Querido; Mila E. McCurrach; Gregory J. Hannon; Scott W. Lowe

ABSTRACT Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53val135 ) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19ARF was required for this effect, since p53 −/− ARF −/− double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19ARF on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53 −/− mdm2 −/− double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.


Molecular and Cellular Biology | 2009

Mitochondrial dysfunction contributes to oncogene-induced senescence

Olga Moiseeva; Véronique Bourdeau; Antoine E. Roux; Xavier Deschênes-Simard; Gerardo Ferbeyre

ABSTRACT The expression of oncogenic ras in normal human cells quickly induces an aberrant proliferation response that later is curtailed by a cell cycle arrest known as cellular senescence. Here, we show that cells expressing oncogenic ras display an increase in the mitochondrial mass, the mitochondrial DNA, and the mitochondrial production of reactive oxygen species (ROS) prior to the senescent cell cycle arrest. By the time the cells entered senescence, dysfunctional mitochondria accumulated around the nucleus. The mitochondrial dysfunction was accompanied by oxidative DNA damage, a drop in ATP levels, and the activation of AMPK. The increase in mitochondrial mass and ROS in response to oncogenic ras depended on intact p53 and Rb tumor suppression pathways. In addition, direct interference with mitochondrial functions by inhibiting the expression of the Rieske iron sulfur protein of complex III or the use of pharmacological inhibitors of the electron transport chain and oxidative phosphorylation was sufficient to trigger senescence. Taking these results together, this work suggests that mitochondrial dysfunction is an effector pathway of oncogene-induced senescence.


Cancer Prevention Research | 2012

Metformin Reduces Endogenous Reactive Oxygen Species and Associated DNA Damage

Carolyn Algire; Olga Moiseeva; Xavier Desch; Lilian Amrein; Luca A. Petruccelli; Elena Birman; Benoit Viollet; Gerardo Ferbeyre; Michael Pollak

Pharmacoepidemiologic studies provide evidence that use of metformin, a drug commonly prescribed for type II diabetes, is associated with a substantial reduction in cancer risk. Experimental models show that metformin inhibits the growth of certain neoplasms by cell autonomous mechanisms such as activation of AMP kinase with secondary inhibition of protein synthesis or by an indirect mechanism involving reduction in gluconeogenesis leading to a decline in insulin levels and reduced proliferation of insulin-responsive cancers. Here, we show that metformin attenuates paraquat-induced elevations in reactive oxygen species (ROS), and related DNA damage and mutations, but has no effect on similar changes induced by H202, indicating a reduction in endogenous ROS production. Importantly, metformin also inhibited Ras-induced ROS production and DNA damage. Our results reveal previously unrecognized inhibitory effects of metformin on ROS production and somatic cell mutation, providing a novel mechanism for the reduction in cancer risk reported to be associated with exposure to this drug. Cancer Prev Res; 5(4); 536–43. ©2012 AACR.


Molecular and Cellular Biology | 1998

Schistosome Satellite DNA Encodes Active Hammerhead Ribozymes

Gerardo Ferbeyre; James M. Smith; Robert Cedergren

ABSTRACT Using a computer program designed to search for RNA structural motifs in sequence databases, we have found a hammerhead ribozyme domain encoded in the Smα repetitive DNA of Schistosoma mansoni. Transcripts of these repeats are expressed as long multimeric precursor RNAs that cleave in vitro and in vivo into unit-length fragments. This RNA domain is able to engage in bothcis and trans cleavage typical of the hammerhead ribozyme. Further computer analysis of S. mansoni DNA identified a potential trans cleavage site in the gene coding for a synaptobrevin-like protein, and RNA transcribed from this gene was efficiently cleaved by the Smα ribozyme in vitro. Similar families of repeats containing the hammerhead domain were found in the closely related Schistosoma haematobium and Schistosomatium douthitti species but were not present in Schistosoma japonicum orHeterobilharzia americana, suggesting that the hammerhead domain was not acquired from a common schistosome ancestor.


Genes & Development | 2011

Regulation of E2Fs and senescence by PML nuclear bodies

Mathieu Vernier; Véronique Bourdeau; Marie-France Gaumont-Leclerc; Olga Moiseeva; Virginie Bégin; Fred Saad; Anne-Marie Mes-Masson; Gerardo Ferbeyre

The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.


Cancer Research | 2014

ERKs in Cancer: Friends or Foes?

Xavier Deschênes-Simard; Filippos Kottakis; Sylvain Meloche; Gerardo Ferbeyre

The extracellular signal-regulated kinase ERK1 and ERK2 (ERK1/2) cascade regulates a variety of cellular processes by phosphorylating multiple target proteins. The outcome of its activation ranges from stimulation of cell survival and proliferation to triggering tumor suppressor responses such as cell differentiation, cell senescence, and apoptosis. This pathway is intimately linked to cancer as several of its upstream activators are frequently mutated in human disease and are shown to accelerate tumorigenesis when engineered in the mouse genome. However, measurement of activated ERKs in human cancers or mouse models does not always support a role in tumorigenesis, and data consistent with a role in tumor suppression have been reported as well. The intensity of ERK signaling, negative feedback loops that regulate the pathway, and cross-talks with other signaling pathways, seem to be of primary importance in determining the final cellular outcome. Cell senescence, a putative tumor-suppression mechanism, depends on high-intensity ERK signals that trigger phosphorylation-dependent protein degradation of multiple proteins required for cell-cycle progression. This response may be circumvented during carcinogenesis by a variety of mechanisms, some of them yet to be discovered, which in essence turn ERK functions from tumor suppression to tumor promotion. The use of pharmacologic inhibitors targeting this pathway must be carefully evaluated so they are applied to cases in which ERKs are mainly oncogenic.


Cell Cycle | 2007

The DNA Damage Signaling Pathway Connects Oncogenic Stress to Cellular Senescence

Frédérick A. Mallette; Gerardo Ferbeyre

The mechanisms of tumor suppression must be linked to the oncogenic threats that may affect a normal cell. An important cancer causing mechanism is the accidental activation of genes that stimulate cell proliferation (oncogenes) by a variety of endogenous or environmental mutagens. This event has been experimentally modelled by enforcing the expression of oncogenes in primary cells. The astonishing outcome of these manipulations is that oncogenes trigger antiproliferative responses preventing progression to malignant transformation. These responses bring to an end proliferation due to cell death or a permanent cell cycle arrest called senescence. Here we review evidence indicating that oncogene induced senescence (OIS) involves activation of p53 via the DNA damage response (DDR). These results imply mechanisms of DNA damage in cells expressing oncogenes, that may be secondary to reactive oxygen species and/or some form of “oncogenic stress” that affect normal DNA replication. Interestingly, DNA damage signals persist in cells that escape from senescence. The implications of these signals for tumorigenesis are also discussed. Given that DNA damage signals have now been observed in cells treated with any stimuli known to induce senescence, the process can be redefined as a metabolically viable but permanent cell cycle arrest with persistent DNA damage signaling.


Aging Cell | 2013

Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐κB activation

Olga Moiseeva; Xavier Deschênes-Simard; Emmanuelle St-Germain; Sebastian Igelmann; Geneviève Huot; Alexandra E. Cadar; Véronique Bourdeau; Michael Pollak; Gerardo Ferbeyre

We show that the antidiabetic drug metformin inhibits the expression of genes coding for multiple inflammatory cytokines seen during cellular senescence. Conditioned medium (CM) from senescent cells stimulates the growth of prostate cancer cells but treatment of senescent cells with metformin inhibited this effect. Bioinformatic analysis of genes downregulated by metformin suggests that the drug blocks the activity of the transcription factor NF‐κB. In agreement, metformin prevented the translocation of NF‐κB to the nucleus and inhibited the phosphorylation of IκB and IKKα/β, events required for activation of the NF‐κB pathway. These effects were not dependent on AMPK activation or on the context of cellular senescence, as metformin inhibited the NF‐κB pathway stimulated by lipopolysaccharide (LPS) in ampk null fibroblasts and in macrophages. Taken together, our results provide a novel mechanism for the antiaging and antineoplastic effects of metformin reported in animal models and in diabetic patients taking this drug.

Collaboration


Dive into the Gerardo Ferbeyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Moiseeva

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge