Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerardo Jiménez is active.

Publication


Featured researches published by Gerardo Jiménez.


The EMBO Journal | 2000

Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family

Dirk Eberhard; Gerardo Jiménez; Barry Heavey; Meinrad Busslinger

Pax5 (BSAP) functions as both a transcriptional activator and repressor during midbrain patterning, B‐cell development and lymphomagenesis. Here we demonstrate that Pax5 exerts its repression function by recruiting members of the Groucho corepressor family. In a yeast two‐hybrid screen, the groucho‐related gene product Grg4 was identified as a Pax5 partner protein. Both proteins interact cooperatively via two separate domains: the N‐terminal Q and central SP regions of Grg4, and the octapeptide motif and C‐terminal transactivation domain of Pax5. The phosphorylation state of Grg4 is altered in vivo upon Pax5 binding. Moreover, Grg4 efficiently represses the transcriptional activity of Pax5 in an octapeptide‐dependent manner. Similar protein interactions resulting in transcriptional repression were also observed between distantly related members of both the Pax2/5/8 and Groucho protein families. In agreement with this evolutionary conservation, the octapeptide motif of Pax proteins functions as a Groucho‐dependent repression domain in Drosophila embryos. These data indicate that Pax proteins can be converted from transcriptional activators to repressors through interaction with corepressors of the Groucho protein family.


The EMBO Journal | 2007

A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling

Sergio Astigarraga; Rona Grossman; Julieta Dı́az-Delfı́n; Carme Caelles; Ze’ev Paroush; Gerardo Jiménez

Early Drosophila development requires two receptor tyrosine kinase (RTK) pathways: the Torso and the Epidermal growth factor receptor (EGFR) pathways, which regulate terminal and dorsal‐ventral patterning, respectively. Previous studies have shown that these pathways, either directly or indirectly, lead to post‐transcriptional downregulation of the Capicua repressor in the early embryo and in the ovary. Here, we show that both regulatory effects are direct and depend on a MAPK docking site in Capicua that physically interacts with the MAPK Rolled. Capicua derivatives lacking this docking site cause dominant phenotypes similar to those resulting from loss of Torso and EGFR activities. Such phenotypes arise from inappropriate repression of genes normally expressed in response to Torso and EGFR signaling. Our results are consistent with a model whereby Capicua is the main nuclear effector of the Torso pathway, but only one of different effectors responding to EGFR signaling. Finally, we describe differences in the modes of Capicua downregulation by Torso and EGFR signaling, raising the possibility that such differences contribute to the tissue specificity of both signals.


Molecular Systems Biology | 2014

Substrate-dependent control of MAPK phosphorylation in vivo.

Yoosik Kim; Ze’ev Paroush; Knud Nairz; Ernst Hafen; Gerardo Jiménez; Stanislav Y. Shvartsman

Phosphorylation of the mitogen‐activated protein kinase (MAPK) is essential for its enzymatic activity and ability to control multiple substrates inside a cell. According to the current models, control of MAPK phosphorylation is independent of its substrates, which are viewed as mere sensors of MAPK activity. Contrary to this modular view of MAPK signaling, our studies in the Drosophila embryo demonstrate that substrates can regulate the level of MAPK phosphorylation in vivo. We demonstrate that a twofold change in the gene dosage of a single substrate can induce a significant change in the phosphorylation level of MAPK and in the conversion of other substrates. Our results support a model where substrates of MAPK counteract its dephosphorylation by phosphatases. Substrate‐dependent control of MAPK phosphorylation is a manifestation of a more general retroactive effect that should be intrinsic to all networks with covalent modification cycles.


Current Biology | 2010

MAPK substrate competition integrates patterning signals in the Drosophila embryo.

Yoosik Kim; Mathieu Coppey; Rona Grossman; Leiore Ajuria; Gerardo Jiménez; Ze’ev Paroush; Stanislav Y. Shvartsman

Terminal regions of the Drosophila embryo are patterned by the localized activation of the mitogen-activated protein kinase (MAPK) pathway. This depends on the MAPK-mediated downregulation of Capicua (Cic), a repressor of the terminal gap genes. We establish that downregulation of Cic is antagonized by the anterior patterning morphogen Bicoid (Bcd). We demonstrate that this effect does not depend on transcriptional activity of Bcd and provide evidence suggesting that Bcd, a direct substrate of MAPK, decreases the availability of MAPK for its other substrates, such as Cic. Based on the quantitative analysis of MAPK signaling in multiple mutants, we propose that MAPK substrate competition coordinates the actions of the anterior and terminal patterning systems. In addition, we identify Hunchback as a novel target of MAPK phosphorylation that can account for the previously described genetic interaction between the posterior and terminal systems. Thus, a common enzyme-substrate competition mechanism can integrate the actions of the anterior, posterior, and terminal patterning signals. Substrate competition can be a general signal integration strategy in networks where enzymes, such as MAPK, interact with their multiple regulators and targets.


Journal of Cell Science | 2012

The Capicua repressor – a general sensor of RTK signaling in development and disease

Gerardo Jiménez; Stanislav Y. Shvartsman; Ze’ev Paroush

Receptor tyrosine kinase (RTK) signaling pathways control multiple cellular decisions in metazoans, often by regulating the expression of downstream genes. In Drosophila melanogaster and other systems, E-twenty-six (ETS) transcription factors are considered to be the predominant nuclear effectors of RTK pathways. Here, we highlight recent progress in identifying the HMG-box protein Capicua (CIC) as a key sensor of RTK signaling in both Drosophila and mammals. Several studies have shown that CIC functions as a repressor of RTK-responsive genes, keeping them silent in the absence of signaling. Following the activation of RTK signaling, CIC repression is relieved, and this allows the expression of the targeted gene in response to local or ubiquitous activators. This regulatory switch is essential for several RTK responses in Drosophila, from the determination of cell fate to cell proliferation. Furthermore, increasing evidence supports the notion that this mechanism is conserved in mammals, where CIC has been implicated in cancer and neurodegeneration. In addition to summarizing our current knowledge on CIC, we also discuss the implications of these findings for our understanding of RTK signaling specificity in different biological processes.


Molecular and Cellular Biology | 1999

A Conserved Motif in Goosecoid Mediates Groucho-Dependent Repression in Drosophila Embryos

Gerardo Jiménez; C. Peter Verrijzer; David Ish-Horowicz

ABSTRACT Surprisingly small peptide motifs can confer critical biological functions. One example is the WRPW tetrapeptide present in the Hairy family of transcriptional repressors, which mediates recruitment of the Groucho (Gro) corepressor to target promoters. We recently showed that Engrailed (En) is another repressor that requires association with Gro for its function. En lacks a WRPW motif; instead, it contains another short conserved sequence, the En homology region 1 (eh1)/GEH motif, that is likely to play a role in tethering Gro to the promoter. Here, we characterize a repressor domain from the Goosecoid (Gsc) developmental regulator that includes an eh1/GEH-like motif. We demonstrate that this domain (GscR) mediates efficient repression in Drosophila blastoderm embryos and that repression by GscR requires Gro function. GscRand Gro interact in vitro, and the eh1/GEH motif is necessary and sufficient for the interaction and for in vivo repression. Because WRPW- and eh1/GEH-like motifs are present in different proteins and in many organisms, the results suggest that interactions between short peptides and Gro represent a widespread mechanism of repression. Finally, we investigate whether Gro is part of a stable multiprotein complex in the nucleus. Our results indicate that Gro does not form stable associations with other proteins but that it may be able to assemble into homomultimeric complexes.


Development | 2011

Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila

Leiore Ajuria; Claudia Nieva; Clint Winkler; Dennis Kuo; Núria Samper; María José Andreu; Aharon Helman; Sergio González-Crespo; Ze'ev Paroush; Albert J. Courey; Gerardo Jiménez

RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.


Developmental Cell | 2011

Gene Regulation by MAPK Substrate Competition

Yoosik Kim; María José Andreu; Bomyi Lim; Kwanghun Chung; Mark Terayama; Gerardo Jiménez; Celeste A. Berg; Hang Lu; Stanislav Y. Shvartsman

Developing tissues are patterned by coordinated activities of signaling systems, which can be integrated by a regulatory region of a gene that binds multiple transcription factors or by a transcription factor that is modified by multiple enzymes. Based on a combination of genetic and imaging experiments in the early Drosophila embryo, we describe a signal integration mechanism that cannot be reduced to a single gene regulatory element or a single transcription factor. This mechanism relies on an enzymatic network formed by mitogen-activated protein kinase (MAPK) and its substrates. Specifically, anteriorly localized MAPK substrates, such as Bicoid, antagonize MAPK-dependent downregulation of Capicua, a repressor that is involved in gene regulation along the dorsoventral axis of the embryo. MAPK substrate competition provides a basis for ternary interaction of the anterior, dorsoventral, and terminal patterning systems. A mathematical model of this interaction can explain gene expression patterns with both anteroposterior and dorsoventral polarities.


Molecular and Cellular Biology | 2006

The Tailless Nuclear Receptor Acts as a Dedicated Repressor in the Early Drosophila Embryo

Érica Morán; Gerardo Jiménez

ABSTRACT Tailless is an orphan nuclear receptor that controls terminal body patterning in Drosophila. Genetic analyses have revealed both positive and negative regulatory interactions of Tailless with various target genes, leading to the idea that, like many other nuclear receptors, Tailless mediates both activation and repression of transcription. In this paper, we have examined the consequences of converting Tailless into an obligate repressor and compared the activities of the resulting protein with those of wild-type Tailless. We find that this repressor form of Tailless behaves like the intact protein in gain- and loss-of-function experiments, being sufficient to support normal embryonic development and establish accurate patterns of gene expression even for positive Tailless targets such as hunchback and brachyenteron. This suggests that Tailless functions exclusively as a transcriptional repressor in the embryo and that the observed positive interactions of Tailless with specific targets are secondary effects involving repression of repressors. We provide evidence that knirps is one such repressor gene acting between Tailless and its indirect positive targets. Finally, our results indicate that Tailless exerts an active mechanism of repression via its ligand-binding domain and that this activity is largely independent of the activation function 2 (AF2) motif characteristic of most nuclear receptors.


Development | 2008

Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis.

Einat Cinnamon; Aharon Helman; Rachel Ben-Haroush Schyr; Amir Orian; Gerardo Jiménez; Ze'ev Paroush

RTK pathways establish cell fates in a wide range of developmental processes. However, how the pathway effector MAPK coordinately regulates the expression of multiple target genes is not fully understood. We have previously shown that the EGFR RTK pathway causes phosphorylation and downregulation of Groucho, a global co-repressor that is widely used by many developmentally important repressors for silencing their various targets. Here, we use specific antibodies that reveal the dynamics of Groucho phosphorylation by MAPK, and show that Groucho is phosphorylated in response to several RTK pathways during Drosophila embryogenesis. Focusing on the regulation of terminal patterning by the Torso RTK pathway, we demonstrate that attenuation of Grouchos repressor function via phosphorylation is essential for the transcriptional output of the pathway and for terminal cell specification. Importantly, Groucho is phosphorylated by an efficient mechanism that does not alter its subcellular localisation or decrease its stability; rather, modified Groucho endures long after MAPK activation has terminated. We propose that phosphorylation of Groucho provides a widespread, long-term mechanism by which RTK signals control target gene expression.

Collaboration


Dive into the Gerardo Jiménez's collaboration.

Top Co-Authors

Avatar

Ze’ev Paroush

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Núria Samper

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leiore Ajuria

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Forés

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

María José Andreu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sergio González-Crespo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aharon Helman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Lu

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge