Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerardo R. Argüello-Astorga is active.

Publication


Featured researches published by Gerardo R. Argüello-Astorga.


Journal of General Virology | 2013

High global diversity of cycloviruses amongst dragonflies

Anisha Dayaram; Kristen A. Potter; Angela B. Moline; Dana Drake Rosenstein; Milen Marinov; J. E. Thomas; Mya Breitbart; Karyna Rosario; Gerardo R. Argüello-Astorga; Arvind Varsani

Members of the family Circoviridae, specifically the genus Circovirus, were thought to infect only vertebrates; however, members of a sister group under the same family, the proposed genus Cyclovirus, have been detected recently in insects. In an effort to explore the diversity of cycloviruses and better understand the evolution of these novel ssDNA viruses, here we present five cycloviruses isolated from three dragonfly species (Orthetrum sabina, Xanthocnemis zealandica and Rhionaeschna multicolor) collected in Australia, New Zealand and the USA, respectively. The genomes of these five viruses share similar genome structure to other cycloviruses, with a circular ~1.7 kb genome and two major bidirectionally transcribed ORFs. The genomic sequence data gathered during this study were combined with all cyclovirus genomes available in public databases to identify conserved motifs and regulatory elements in the intergenic regions, as well as determine diversity and recombinant regions within their genomes. The genomes reported here represent four different cyclovirus species, three of which are novel. Our results confirm that cycloviruses circulate widely in winged-insect populations; in eight different cyclovirus species identified in dragonflies to date, some of these exhibit a broad geographical distribution. Recombination analysis revealed both intra- and inter-species recombination events amongst cycloviruses, including genomes recovered from disparate sources (e.g. goat meat and human faeces). Similar to other well-characterized circular ssDNA viruses, recombination may play an important role in cyclovirus evolution.


Infection, Genetics and Evolution | 2015

Characterisation of a diverse range of circular replication-associated protein encoding DNA viruses recovered from a sewage treatment oxidation pond.

Simona Kraberger; Gerardo R. Argüello-Astorga; Laurence G. Greenfield; Craig Galilee; Donald Law; Darren P. Martin; Arvind Varsani

Our knowledge of circular replication-associated protein encoding single-stranded (CRESS) DNA virus diversity has increased dramatically in recent years, largely due to advances in high-throughput sequencing technologies. These viruses are apparently major virome components in most terrestrial and aquatic environments and it is therefore of interest to determine their diversity at the interfaces between these environments. Treated sewage water is a particularly interesting interface between terrestrial and aquatic viromes in that it is directly pumped into waterways and is likely to contain virus populations that have been strongly impacted by humans. We used a combination of high-throughput sequencing, full genome PCR amplification, cloning and Sanger sequencing to investigate the diversity of CRESS DNA viruses present in a sewage oxidation pond. Using this approach, we recovered 50 putatively complete novel CRESS viral genomes (it remains possible that some are components of multipartite viral genomes) and 11 putatively sub-genome-length circular DNA molecules which may be either defective genomes or components of multipartite genomes. Thirteen of the genomes have bidirectional genome organisations and share similar conserved replication-associated protein (Rep) motifs to those of the gemycircularviruses: a group that in turn is most closely related to the geminiviruses. The remaining 37 viral genomes share very low degrees of Rep similarity to those of all other known CRESS DNA viruses. This number of highly divergent CRESS DNA virus genomes within a single sewage treatment pond further reinforces the notion that there likely exist hundreds of completely unknown genus/family level CRESS DNA virus groupings.


Plant Disease | 1999

First Report of Tomato Yellow Leaf Curl Geminivirus in Yucatán, México

J. T. Ascencio-Ibáñez; R. Diaz-Plaza; J. Méndez-Lozano; Z. I. Monsalve-Fonnegra; Gerardo R. Argüello-Astorga; R. F. Rivera-Bustamante

Geminiviruses are probably the most important viral pathogen affecting tomatoes and other crops in the Caribbean region. In addition to losses previously caused by native virus populations, the introduction of tomato yellow leaf curl virus (TYLCV) into the area has become a major concern for tomato growers (1). Since the detection of TYLCV in Cuba, and later in Florida (2,3), we have been monitoring the tomato- and pepper-growing areas of the Yucatán Peninsula, México, for TYLCV. We also have reanalyzed samples previously collected. Other geminiviruses (pepper huasteco virus [PHV], Texas pepper virus [TPV], and tomato mottle virus [ToMoV]) in the area can cause symptoms similar to those induced by TYLCV, which led us to refine our analysis of samples, using a polymerase chain reaction (PCR) procedure that can differentiate between monopartite and bipartite begomoviruses based on the size of the amplification product, 750 and 600 bp, respectively. One advantage of using this set of primers is that the PCR product, which includes the amino terminus of the Rep protein, intergenic region, precoat protein, and amino terminus of the coat protein, can be sequenced completely with only one sequencing reaction from each end. Using the primer set, we analyzed samples collected from tomato and pepper fields (as well as from weeds surrounding the fields) from December 1996 until March 1999. In most cases, samples were taken from plants that showed yellowing, curling, and stunting symptoms. Most of the samples that were positive for geminiviruses came from plants infected with PHV or TPV. However, three tomato samples collected during two seasons in Dzidzantun and Yobain counties (northeast of Mérida, Yucatan) produced the larger PCR amplification product (750 bp) expected for monopartite begomoviruses. PCR products were cloned and sequenced to confirm their identity. The sequence was deposited in the GenBank Database (Accession no. AF168709) and compared with all geminivirus sequences deposited in the database. Analysis showed that the amplified fragment from the TYLCV strain present in the Yucatán is 99% identical to the isolate reported in the Dominican Republic and later found in Cuba (2). As previously noted, the isolate is almost identical to TYLCV-Isr (2). In addition to the PCR product, a full-length TYLCV clone was obtained directly from DNA extracts of an infected tomato plant. Further characterization of the full-length clone is underway. The fact that TYLCV was detected in two counties and in samples collected during two seasons confirms the presence of TYLCV in the Yucatán. Interestingly, although the first positive sample for TYLCV was collected during the winter of 1996 and 1997, current incidence is rather low-only two other positive samples have been detected in more recently collected samples. Perhaps the characteristics of the agriculture system in the Yucatán (small, disperse plots) or the presence of other geminiviruses have contributed to a slow spread of the virus. More comprehensive surveys are required to confirm the actual distribution of the pathogen in the area. References: (1) J. E. Polston et al. Plant Dis. 81:1358, 1997. (2) J. E. Polston et al. Plant Dis. 83:984, 1999. (3) P. L. Ramos et al. Plant Dis. 80:1208, 1996.


Infection, Genetics and Evolution | 2014

Diverse small circular single-stranded DNA viruses identified in a freshwater pond on the McMurdo Ice Shelf (Antarctica)

Gerardo R. Argüello-Astorga; Simona Kraberger; Laurel Julian; Daisy Stainton; Paul A. Broady; Arvind Varsani

Antarctica has some of the harshest environmental conditions for existence of life on Earth. In this pilot study we recovered eight diverse circular single-stranded DNA (ssDNA) viral genome sequences (1904-3120 nts) from benthic mats dominated by filamentous cyanobacteria in a freshwater pond on the McMurdo Ice Shelf sampled in 1988. All genomes contain two to three major open reading frames (ORFs) that are uni- or bi-directionally transcribed and all have an ORF encoding a replication-associated protein (Rep). In one genome, the second ORF has similarity to a capsid protein (CP) of Nepavirus which is most closely related to geminiviruses. Additionally, all genomes have two intergenic regions that contain putative stem loop structures, six genomes have NANTATTAC as the nonanucleotide motif, while one has CCTTATTAC, and another has a non-canonical stem loop. In the large intergenic region, we identified iterative sequences flanking the putative stem-loop elements which are a hallmark of most circular ssDNA viruses encoding rolling circle replication (RCR) initiators of the HUH endonuclease superfamily. The Reps encoded by ssDNA viral genomes recovered in this study shared <38% pairwise identity to all other Reps of known ssDNA viruses. A previous study on Lake Limnopolar (Livingston Island, South Shetland Islands), using next-generation sequencing identified circular ssDNA viruses and their putative Reps share <35% pairwise identity to those from the viral genomes removed in this study. It is evident from our pilot study that the global diversity of ssDNA viruses is grossly underestimated and there is limited knowledge on ssDNA viruses in Antarctica.


Archives of Virology | 2003

Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: implications for the delimitation of cis- and trans-acting replication specificity determinants.

P. L. Ramos; Ramón G. Guevara-González; R. Peral; J. T. Ascencio-Ibañez; Jane E. Polston; Gerardo R. Argüello-Astorga; J. C. Vega-Arreguín; R. F. Rivera-Bustamante

Summary. Over the last decade, the tomato production in Cuba has been affected by new whitefly-associated diseases. In addition to the well-documented presence of Tomato yellow leaf curl virus (TYLCV) along the island, the occurrence of bipartite begomoviruses has also been reported. One of them, tentatively named Tomato mottle Taino virus (ToMoTV), has now been cloned and characterized at the molecular level. Its genomic organization is similar to other bipartite geminiviruses. Phylogenetic analyses placed ToMoTV in a subcluster with other geminiviruses isolated in the Caribbean Basin: Tomato mottle virus (ToMoV), Bean dwarf mosaic virus, Abutilon mosaic virus, Sida golden mosaic virus and Potato yellow mosaic virus (PYMV). Biolistic inoculation of tobacco and tomato plants with cloned viral DNA showed that ToMoTV pseudorecombines with PYMV-GP as predicted by the identity of their iterative elements, whereas it does not show the same ability with ToMoV, even when their replication-associated proteins (Rep and REn) show the highest percentage of similarity. A comparative analysis of Rep proteins from begomoviruses that are able to produce viable reassortants suggests that some key elements for virus replication specificity are located in the first ten amino acids of this protein.


Archives of Virology | 2010

DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs

Aurora Londoño; Lina Riego-Ruiz; Gerardo R. Argüello-Astorga

Eukaryotic ssDNA viruses encode a rolling-circle replication (RCR) initiation protein, Rep, which binds to iterated DNA elements functioning as essential elements for virus-specific replication. By using the iterons of all known circoviruses, nanoviruses and nanovirus-like satellites as heuristic devices, we have identified certain amino acid residues that presumably determine the DNA-binding specificity of their Rep proteins. These putative “specificity determinants” (SPDs) cluster in two discrete protein regions, which are adjacent to distinct conserved motifs. A comparable distribution of SPDs was uncovered in the Rep protein of geminiviruses. Modeling of the tertiary structure of diverse Rep proteins showed that SPD regions interact to form a small β-sheet element that has been proposed to be critical for high-affinity DNA-binding of Rep. Our findings indicate that eukaryotic circular ssDNA viruses have a common ancestor and suggest that SPDs present in replication initiators from a huge variety of viral and plasmid RCR systems are associated with the same conserved motifs.


Infection, Genetics and Evolution | 2014

Novel circular DNA viruses identified in Procordulia grayi and Xanthocnemis zealandica larvae using metagenomic approaches.

Anisha Dayaram; Mark L. Galatowitsch; Jon S. Harding; Gerardo R. Argüello-Astorga; Arvind Varsani

Recent advances in sequencing and metagenomics have enabled the discovery of many novel single stranded DNA (ssDNA) viruses from various environments. We have previously demonstrated that adult dragonflies, as predatory insects, are useful indicators of ssDNA viruses in terrestrial ecosystems. Here we recover and characterise 13 viral genomes which represent 10 novel and diverse circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA viruses (1628-2668nt) from Procordulia grayi and Xanthocnemis zealandica dragonfly larvae collected from four high-country lakes in the South Island of New Zealand. The dragonfly larvae associated CRESS DNA viruses have different genome architectures, however, they all encode two major open reading frames (ORFs) which either have bidirectional or unidirectional arrangement. The 13 viral genomes have a conserved NAGTATTAC nonanucleotide motif and in their predicted Rep proteins we identified the rolling circle replication (RCR) motif 1, 2 and 3, as well as superfamily 3 (SF3) helicase motifs. Maximum likelihood phylogenetic and pairwise identity analysis of the Rep amino acid sequences reveal that the dragonfly larvae novel CRESS DNA viruses share <63% pairwise amino acid identity to the Reps of other CRESS DNA viruses whose complete genomes have been determined and available in public databases and that these viruses are novel. CRESS DNA viruses are circulating in larval dragonfly populations; however, we are unable to ascertain whether these viruses are infecting the larvae directly or are transient within dragonflies via their diet.


Infection, Genetics and Evolution | 2016

Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

Anisha Dayaram; Mark L. Galatowitsch; Gerardo R. Argüello-Astorga; Katherine van Bysterveldt; Simona Kraberger; Daisy Stainton; Jon S. Harding; Philippe Roumagnac; Darren Patrick Martin; Pierre Lefeuvre; Arvind Varsani

Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.


Infection, Genetics and Evolution | 2015

Diverse small circular DNA viruses circulating amongst estuarine molluscs

Anisha Dayaram; Sharyn J. Goldstien; Gerardo R. Argüello-Astorga; Christopher Gomez; Jon S. Harding; Arvind Varsani

Our understanding of the diversity and abundance of circular replication associated protein (Rep) - encoding single stranded (CRESS) DNA viruses has increased considerably over the last few years due to a combination of modern sequencing technologies and new molecular tools. Studies have used these to identify and recover CRESS DNA viruses from a range of different marine organisms, including copepods, shrimp and molluscs. In our study we identified 79 novel CRESS DNA viruses from three mollusc species (Austrovenus stutchburyi, Paphies subtriangulata and Amphibola crenata) and benthic sediments from the Avon-Heathcote estuary in Christchurch, New Zealand. The genomes recovered have varying genome architectures, with all encoding at least two major ORFs that have either unidirectional or bidirectional organisation. Analysis of the Reps of the viral genomes showed they are all highly diverse, with only one Rep sequence sharing 65% amino acid identity with the Rep of gastropod-associated circular DNA virus (GaCSV). Our study adds significantly to the wealth of CRESS DNA viruses recovered from freshwater and marine environments and extends our knowledge of the distribution of these viruses.


Virology Journal | 2010

Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region

Josefat Gregorio-Jorge; Artemiza Bernal-Alcocer; Bernardo Bañuelos-Hernández; Ángel G. Alpuche-Solís; Cecilia Hernández-Zepeda; Oscar A. Moreno-Valenzuela; Gustavo Frías-Treviño; Gerardo R. Argüello-Astorga

BackgroundEuphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country.ResultsA new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade.ConclusionsEuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of their DNA-B component, short rep gene sequences located downstream to a CP-promoter-like domain. This assemblage of DNA-A-related sequences within the DNA-B IR is reminiscent of polyomavirus microRNAs and could be involved in the posttranscriptional regulation of the cognate viral rep gene, an intriguing possibility that should be experimentally explored

Collaboration


Dive into the Gerardo R. Argüello-Astorga's collaboration.

Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Anisha Dayaram

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Bernardo Bañuelos-Hernández

Instituto Potosino de Investigación Científica y Tecnológica

View shared research outputs
Top Co-Authors

Avatar

Ángel G. Alpuche-Solís

Instituto Potosino de Investigación Científica y Tecnológica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon S. Harding

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

J. A. Mauricio-Castillo

Autonomous University of Zacatecas

View shared research outputs
Top Co-Authors

Avatar

Joel E. López-Meza

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

Jorge Armando Mauricio-Castillo

Instituto Potosino de Investigación Científica y Tecnológica

View shared research outputs
Researchain Logo
Decentralizing Knowledge