Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerben J. Zylstra is active.

Publication


Featured researches published by Gerben J. Zylstra.


Applied and Environmental Microbiology | 2001

Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants.

Lori Daane; I. Harjono; Gerben J. Zylstra; Max M. Häggblom

ABSTRACT Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group,Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation fromPseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, andMycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.


Journal of Biological Chemistry | 1998

IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF AN EFFLUX PUMP INVOLVED IN PSEUDOMONAS PUTIDA S12 SOLVENT TOLERANCE

J. Kieboom; J.J. Dennis; J.A.M. de Bont; Gerben J. Zylstra

Bacteria able to grow in aqueous:organic two-phase systems have evolved resistance mechanisms to the toxic effects of solvents. One such mechanism is the active efflux of solvents from the cell, preserving the integrity of the cell interior.Pseudomonas putida S12 is resistant to a wide variety of normally detrimental solvents due to the action of such an efflux pump. The genes for this solvent efflux pump were cloned from P. putida S12 and their nucleotide sequence determined. The deduced amino acid sequences encoded by the three genes involved show a striking resemblance to proteins known to be involved in proton-dependent multidrug efflux systems. Transfer of the genes for the solvent efflux pump to solvent-sensitive P. putida strains results in the acquisition of solvent resistance. This opens up the possibilities of using the solvent efflux system to construct bacterial strains capable of performing biocatalytic transformations of insoluble substrates in two-phase aqueous:organic medium.


Applied and Environmental Microbiology | 2002

Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17.

Dockyu Kim; Young Soo Kim; Seong-Ki Kim; Si Wouk Kim; Gerben J. Zylstra; Young-Min Kim

ABSTRACT Rhodococcus sp. strain DK17 was isolated from soil and analyzed for the ability to grow on o-xylene as the sole carbon and energy source. Although DK17 cannot grow on m- and p-xylene, it is capable of growth on benzene, phenol, toluene, ethylbenzene, isopropylbenzene, and other alkylbenzene isomers. One UV-generated mutant strain, DK176, simultaneously lost the ability to grow on o-xylene, ethylbenzene, isopropylbenzene, toluene, and benzene, although it could still grow on phenol. The mutant strain was also unable to oxidize indole to indigo following growth in the presence of o-xylene. This observation suggests the loss of an oxygenase that is involved in the initial oxidation of the (alkyl)benzenes tested. Another mutant strain, DK180, isolated for the inability to grow on o-xylene, retained the ability to grow on benzene but was unable to grow on alkylbenzenes due to loss of a meta-cleavage dioxygenase needed for metabolism of methyl-substituted catechols. Further experiments showed that DK180 as well as the wild-type strain DK17 have an ortho-cleavage pathway which is specifically induced by benzene but not by o-xylene. These results indicate that DK17 possesses two different ring-cleavage pathways for the degradation of aromatic compounds, although the initial oxidation reactions may be catalyzed by a common oxygenase. Gas chromatography-mass spectrometry and 300-MHz proton nuclear magnetic resonance spectrometry clearly show that DK180 accumulates 3,4-dimethylcatechol from o-xylene and both 3- and 4-methylcatechol from toluene. This means that there are two initial routes of oxidation of toluene by the strain. Pulsed-field gel electrophoresis analysis demonstrated the presence of two large megaplasmids in the wild-type strain DK17, one of which (pDK2) was lost in the mutant strain DK176. Since several other independently derived mutant strains unable to grow on alkylbenzenes are also missing pDK2, the genes encoding the initial steps in alkylbenzene metabolism (but not phenol metabolism) appear to be present on this approximately 330-kb plasmid.


Environmental Microbiology | 2012

The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation

Amy V. Callaghan; B.E.L. Morris; Inês A. C. Pereira; Michael J. McInerney; Rachel N. Austin; John T. Groves; J.J. Kukor; Joseph M. Suflita; Lily Y. Young; Gerben J. Zylstra; Boris Wawrik

Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.


Journal of Industrial Microbiology & Biotechnology | 1997

Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1

Gerben J. Zylstra

Sphingomonas yanoikuyae B1 is able to grow on a wide variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. In addition, the initial enzymes for degradation of biphenyl have the ability to metabolize a wide variety of different polycyclic aromatic hydrocarbons. The catabolic pathways for the degradation of both the monocyclic and polycyclic aromatic hydrocarbons are intertwined, joining together at the level of (methyl)benzoate and catechol. Both upper branches of the catabolic pathways are induced when S. yanoikuyae B1 is grown on either class of compound. An analysis of the genes involved in the degradation of these aromatic compounds reveals that at least six operons are involved. The genes are not arranged in discrete pathway units but are combined in groups with genes for the degradation of both classes of compounds in the same operon. Genes for multiple dioxygenases are present perhaps explaining the ability of S. yanoikuyae B1 to grow on a wide variety of aromatic compounds.


Applied and Environmental Microbiology | 2006

Biodegradation of Ether Pollutants by Pseudonocardia sp. Strain ENV478

Simon Vainberg; Kevin McClay; Hisako Masuda; Duane Root; Charles W. Condee; Gerben J. Zylstra; Robert J. Steffan

ABSTRACT A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.1 mg/h/g TSS). Although the highest rates of 1,4-dioxane degradation occurred after growth on THF, strain ENV478 also degraded 1,4-dioxane after growth on sucrose, lactate, yeast extract, 2-propanol, and propane, indicating that there was some level of constitutive degradative activity. The BCEE degradation rates were about threefold higher after growth on propane (32 mg/h/g TSS) than after growth on THF, and MTBE degradation resulted in accumulation of tert-butyl alcohol. Degradation of 1,4-dioxane resulted in accumulation of 2-hydroxyethoxyacetic acid (2HEAA). Despite its inability to grow on 1,4-dioxane, strain ENV478 degraded this compound for >80 days in aquifer microcosms. Our results suggest that the inability of strain ENV478 and possibly other THF-degrading bacteria to grow on 1,4-dioxane is related to their inability to efficiently metabolize the 1,4-dioxane degradation product 2HEAA but that strain ENV478 may nonetheless be useful as a biocatalyst for remediating 1,4-dioxane-contaminated aquifers.


Applied and Environmental Microbiology | 2006

Microbial Dioxygenase Gene Population Shifts during Polycyclic Aromatic Hydrocarbon Biodegradation

Sinéad M. Ní Chadhain; R. Sean Norman; Karen V. Pesce; Gerben J. Zylstra

ABSTRACT The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes.


Journal of Industrial Microbiology & Biotechnology | 1999

Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1.

Gerben J. Zylstra

Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation.


Applied and Environmental Microbiology | 2005

Identification of Unique Type II Polyketide Synthase Genes in Soil

Boris Wawrik; Lee J. Kerkhof; Gerben J. Zylstra

ABSTRACT Many bacteria, particularly actinomycetes, are known to produce secondary metabolites synthesized by polyketide synthases (PKS). Bacterial polyketides are a particularly rich source of bioactive molecules, many of which are of potential pharmaceutical relevance. To directly access PKS gene diversity from soil, we developed degenerate PCR primers for actinomycete type II KSα (ketosynthase) genes. Twenty-one soil samples were collected from diverse sources in New Jersey, and their bacterial communities were compared by terminal restriction fragment length polymorphism (TRFLP) analysis of PCR products generated using bacterial 16S rRNA gene primers (27F and 1525R) as well as an actinomycete-specific forward primer. The distribution of actinomycetes was highly variable but correlated with the overall bacterial species composition as determined by TRFLP. Two samples were identified to contain a particularly rich and unique actinomycete community based on their TRFLP patterns. The same samples also contained the greatest diversity of KSα genes as determined by TRFLP analysis of KSα PCR products. KSα PCR products from these and three additional samples with interesting TRFLP pattern were cloned, and seven novel clades of KSα genes were identified. Greatest sequence diversity was observed in a sample containing a moderate number of peaks in its KSα TRFLP. The nucleotide sequences were between 74 and 81% identical to known sequences in GenBank. One cluster of sequences was most similar to the KSα involved in ardacin (glycopeptide antibiotic) production by Kibdelosporangium aridum. The remaining sequences showed greatest similarity to the KSα genes in pathways producing the angucycline-derived antibiotics simocyclinone, pradimicin, and jasomycin.


Applied and Environmental Microbiology | 2007

Potential for Mercury Reduction by Microbes in the High Arctic

Alexandre J. Poulain; Sinéad M. Ní Chadhain; Parisa A. Ariya; Marc Amyot; Edenise Garcia; Peter G. C. Campbell; Gerben J. Zylstra; Tamar Barkay

ABSTRACT The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions.

Collaboration


Dive into the Gerben J. Zylstra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beom Sik Kang

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge