Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerben M. Franssen is active.

Publication


Featured researches published by Gerben M. Franssen.


Molecular Cancer Therapeutics | 2010

Pretargeted Immuno–Positron Emission Tomography Imaging of Carcinoembryonic Antigen–Expressing Tumors with a Bispecific Antibody and a 68Ga- and 18F-Labeled Hapten Peptide in Mice with Human Tumor Xenografts

Rafke Schoffelen; Robert M. Sharkey; David M. Goldenberg; Gerben M. Franssen; William J. McBride; Edmund A. Rossi; Chien-Hsing Chang; Peter Laverman; Jonathan A. Disselhorst; Annemarie Eek; Winette T. A. van der Graaf; Wim J.G. Oyen; Otto C. Boerman

18F-Fluorodeoxyglucose (18F-FDG) is the most common molecular imaging agent in oncology, with a high sensitivity and specificity for detecting several cancers. Antibodies could enhance specificity; therefore, procedures were developed for radiolabeling a small (∼1451 Da) hapten peptide with 68Ga or 18F to compare their specificity with 18F-FDG for detecting tumors using a pretargeting procedure. Mice were implanted with carcinoembryonic antigen (CEA; CEACAM5)–expressing LS174T human colonic tumors and a CEA-negative tumor, or an inflammation was induced in thigh muscle. A bispecific monoclonal anti-CEA × anti-hapten antibody was given to mice, and 16 hours later, 5 MBq of 68Ga- or 18F-labeled hapten peptides were administered intravenously. Within 1 hour, tissues showed high and specific targeting of 68Ga-IMP-288, with 10.7 ± 3.6% ID/g uptake in the tumor and very low uptake in normal tissues (e.g., tumor-to-blood ratio of 69.9 ± 32.3), in a CEA-negative tumor (0.35 ± 0.35% ID/g), and inflamed muscle (0.72 ± 0.20% ID/g). 18F-FDG localized efficiently in the tumor (7.42 ± 0.20% ID/g) but also in the inflamed muscle (4.07 ± 1.13% ID/g) and in several normal tissues; thus, pretargeted 68Ga-IMP-288 provided better specificity and sensitivity. Positron emission tomography (PET)/computed tomography images reinforced the improved specificity of the pretargeting method. 18F-labeled IMP-449 distributed similarly in the tumor and normal tissues as the 68Ga-labeled IMP-288, indicating that either radiolabeled hapten peptide could be used. Thus, pretargeted immuno-PET does exceptionally well with short-lived radionuclides and is a highly sensitive procedure that is more specific than 18F-FDG-PET. Mol Cancer Ther; 9(4); 1019–27. ©2010 AACR.


The Journal of Nuclear Medicine | 2010

PET of Hypoxia with 89Zr-Labeled cG250-F(ab′)2 in Head and Neck Tumors

B.A.W. Hoeben; Johannes H.A.M. Kaanders; Gerben M. Franssen; E.G.C. Troost; Paul F.J.W. Rijken; Egbert Oosterwijk; Guus A.M.S. van Dongen; Wim J.G. Oyen; Otto C. Boerman; Johan Bussink

Hypoxic tumor cells are resistant to radiotherapy and various chemotherapeutic agents. The pretherapeutic assessment of intratumoral hypoxia may allow selection of patients for intensified treatment regimens. Carbonic anhydrase IX (CAIX) is an endogenous hypoxia-related protein involved in pH regulation and is upregulated in many tumor types. Radionuclide imaging using a monoclonal antibody against CAIX, such as cG250, may allow noninvasive PET of hypoxia in these tumor types. The aims of this study were to investigate whether 89Zr-labeled cG250-F(ab′)2 allowed visualization of tumor hypoxia using small-animal PET and whether the tracer showed spatial correlation to the microscopic distribution of CAIX-expressing cells in a human head and neck xenograft tumor model. Methods: Athymic mice with subcutaneous human head and neck carcinoma xenografts (SCCNij3) were imaged with small-animal PET after injection of 89Zr-cG250-F(ab′)2. PET images were parameterized in terms of standardized uptake values (SUVs). After injection with the nitroimidazole hypoxia marker pimonidazole and the perfusion marker Hoechst 33342, the animals were sacrificed, tumors excised, and CAIX- and pimonidazole-marked hypoxia and blood perfusion were analyzed immunohistochemically. 89Zr-cG250-F(ab′)2 tumor uptake was analyzed by ex vivo activity counting and by autoradiography of tumor sections. Results: As early as 4 h after administration, accumulation of 89Zr-cG250-F(ab′)2 in the tumor had occurred and tumors were clearly visualized by PET, with reduced uptake by 24 h after injection. Pixel-by-pixel analysis showed a significant positive spatial correlation between CAIX expression and 89Zr-cG250-F(ab′)2 localization (r = 0.57–0.74; P < 0.0001). Also, significant correlations were found between pimonidazole staining intensity and 89Zr-cG250-F(ab′)2 activity concentration, although less strong (r = 0.46–0.68; P < 0.0001). Tumor maximum SUV correlated significantly with tumor uptake determined ex vivo (r = 0.93; P = 0.0067), as did fractions of CAIX and pimonidazole in tumor sections (r = 0.75; P = 0.03 and r = 0.78; P = 0.02, respectively). Conclusion: 89Zr-labeled cG250-F(ab′)2 small-animal PET showed rapid accumulation in a head and neck xenograft tumor model with good correlation to CAIX expression on a microscopic level.


The Journal of Nuclear Medicine | 2010

ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model.

Sandra Heskamp; Hanneke W. M. van Laarhoven; Janneke D.M. Molkenboer-Kuenen; Gerben M. Franssen; Yvonne M.H. Versleijen-Jonkers; Wim J.G. Oyen; Winette T. A. van der Graaf; Otto C. Boerman

The insulinlike growth factor 1 receptor (IGF-1R) is a new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti–IGF-1R antibodies. Therefore, the aim of the present study was to develop a noninvasive, in vivo imaging method, using radiolabeled antibodies, to visualize IGF-1R expression. Methods: R1507 is a monoclonal antibody directed against the IGF-1R. In vitro, the affinity and internalization kinetics of 111In-R1507 were determined using the IGF-1R–expressing triple-negative breast cancer cell line SUM149. In vivo, the pharmacodynamics of 111In-R1507 and 125I-R1507 were determined in mice with subcutaneous SUM149 tumors. 111In-R1507 SPECT and 89Zr-R1507 PET images of mice with subcutaneous SUM149 tumors were acquired at 1, 3, and 7 d after injection. Results: 111In-R1507 (concentration required to inhibit binding by 50%, 0.1 nM) was slowly internalized by SUM149 cells. 111In-R1507 specifically and efficiently accumulated in the SUM149 xenografts: the tumor uptake was 20 percentage injected dose per gram (%ID/g), 33 %ID/g, and 31 %ID/g at 1, 3, and 7 d after injection, respectively. 125I-R1507 accumulated in the tumor less efficiently. Small-animal SPECT and small-animal PET of mice clearly visualized the subcutaneous SUM149 xenograft, with increasing contrast at later time points. Conclusion: 111In-R1507 and 89Zr-R1507 are new tracers to noninvasively determine IGF-1R expression in vivo in breast cancer xenografts using SPECT and PET. In the future, these techniques may enable patient selection for IGF-1R–targeted therapy.


European Journal of Nuclear Medicine and Molecular Imaging | 2012

Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging

Milos Petrik; Gerben M. Franssen; Hubertus Haas; Peter Laverman; Caroline Hörtnagl; Markus Schrettl; Anna Helbok; Cornelia Lass-Flörl; Clemens Decristoforo

PurposeInvasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with 68Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising 68Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE).MethodsSiderophores were labelled with 68Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic μPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo.Results68Ga-siderophores were labelled with high radiochemical purity and specific activity. 68Ga-TAFC and 68Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, 68Ga-TAFC and 68Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by μPET with both compounds and increased with severity of the infection, correlating with abnormal CT images.Conclusion68Ga-TAFC and 68Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging.


The Journal of Nuclear Medicine | 2012

PET of Tumors Expressing Gastrin-Releasing Peptide Receptor with an 18F-Labeled Bombesin Analog

Ingrid Dijkgraaf; Gerben M. Franssen; William J. McBride; Christopher D'Souza; Peter Laverman; C.J. Smith; David M. Goldenberg; Wim J.G. Oyen; Otto C. Boerman

The gastrin-releasing peptide receptor (GRPR) is overexpressed in human prostate cancer. Bombesin (BBN) is a neurotransmitter of 14 amino acids and binds with selectivity and with high affinity to GRPRs. We have synthesized a NOTA-conjugated bombesin derivative, NOTA-8-Aoc-BBN(7-14)NH2, to label this analog with 18F using the new Al18F method. In this study, the GRPR-targeting potential of 18F-labeled NOTA-8-Aoc-BBN(7-14)NH2 was studied using 68Ga-NOTA-8-Aoc-BBN(7-14)NH2 as a reference. Methods: The NOTA-conjugated bombesin analog was synthesized and radiolabeled with 68Ga or 18F. For 18F labeling, we used our new 1-pot, 1-step method. The labeled product was purified by reversed-phase high-performance liquid chromatography. The log P values of the radiotracers were determined. The tumor-targeting characteristics of the compounds were assessed in mice with subcutaneously growing PC-3 xenografts. GRPR-binding specificity was studied by coinjection of an excess of unlabeled NOTA-8-Aoc-BBN(7-14)NH2. Small-animal PET/CT images were acquired. Results: NOTA-8-Aoc-BBN(7-14)NH2 could be efficiently labeled with 18F or with 68Ga. NOTA-8-Aoc-BBN(7-14)NH2 was labeled with 18F in a single step, with 50%–90% yield. Radiolabeling, including purification, was performed in 45 min and resulted in a specific activity of greater than 10 GBq/μmol. The log P values of 18F- and 68Ga-labeled NOTA-8-Aoc-BBN(7-14)NH2 were −1.47 ± 0.05 and −1.98 ± 0.03, respectively. In mice, both radiolabeled compounds cleared rapidly from the blood (<0.07 percentage injected dose per gram at 1 h after injection), mainly via the kidneys. At 1 h after injection, the uptake of 18F- and 68Ga-labeled NOTA-8-Aoc-BBN(7-14)NH2 in the PC-3 tumors was 2.15 ± 0.55 and 1.24 ± 0.26 percentage injected dose per gram, respectively. GRPR-binding specificity was demonstrated by reduced tumor uptake of radiolabeled NOTA-8-Aoc-BBN(7-14)NH2 after coinjection of a 100-fold excess of unlabeled NOTA-8-Aoc-BBN(7-14)NH2 peptide. The accumulation of 18F-NOTA-8-Aoc-BBN(7-14)NH2 in the subcutaneous PC-3 tumors could be visualized via small-animal PET. Conclusion: NOTA-8-Aoc-BBN(7-14)NH2 could be labeled rapidly and efficiently with 18F using a 1-pot, 1-step method. Radiolabeled NOTA-8-Aoc-BBN(7-14)NH2 specifically accumulated in the GRPR-expressing PC-3 tumors and should be evaluated clinically.


PLOS ONE | 2013

Natural Killer Cells Generated from Cord Blood Hematopoietic Progenitor Cells Efficiently Target Bone Marrow-Residing Human Leukemia Cells in NOD/SCID/IL2Rgnull Mice

Jeannette Cany; Anniek B. van der Waart; Marleen Tordoir; Gerben M. Franssen; Basav N. Hangalapura; Jolanda de Vries; Otto C. Boerman; Nicolaas Schaap; Robbert van der Voort; Jan Spanholtz; Harry Dolstra

Natural killer (NK) cell-based adoptive immunotherapy is an attractive adjuvant treatment option for patients with acute myeloid leukemia. Recently, we reported a clinical-grade, cytokine-based culture method for the generation of NK cells from umbilical cord blood (UCB) CD34+ hematopoietic progenitor cells with high yield, purity and in vitro functionality. The present study was designed to evaluate the in vivo anti-leukemic potential of UCB-NK cells generated with our GMP-compliant culture system in terms of biodistribution, survival and cytolytic activity following adoptive transfer in immunodeficient NOD/SCID/IL2Rgnull mice. Using single photon emission computed tomography, we first demonstrated active migration of UCB-NK cells to bone marrow, spleen and liver within 24 h after infusion. Analysis of the chemokine receptor expression profile of UCB-NK cells matched in vivo findings. Particularly, a firm proportion of UCB-NK cells functionally expressed CXCR4, what could trigger BM homing in response to its ligand CXCL12. In addition, high expression of CXCR3 and CCR6 supported the capacity of UCB-NK cells to migrate to inflamed tissues via the CXCR3/CXCL10-11 and CCR6/CCL20 axis. Thereafter, we showed that low dose IL-15 mediates efficient survival, expansion and maturation of UCB-NK cells in vivo. Most importantly, we demonstrate that a single UCB-NK cell infusion combined with supportive IL-15 administration efficiently inhibited growth of human leukemia cells implanted in the femur of mice, resulting in significant prolongation of mice survival. These preclinical studies strongly support the therapeutic potential of ex vivo-generated UCB-NK cells in the treatment of myeloid leukemia after immunosuppressive chemotherapy.


The Journal of Nuclear Medicine | 2014

Preclinical Comparison of Al18F- and 68Ga-Labeled Gastrin-Releasing Peptide Receptor Antagonists for PET Imaging of Prostate Cancer

Kristell L.S. Chatalic; Gerben M. Franssen; Wytske M. van Weerden; William J. McBride; Peter Laverman; Erik de Blois; Bouchra Hajjaj; Luc Brunel; David M. Goldenberg; Jean-Alain Fehrentz; Jean Martinez; Otto C. Boerman; Marion de Jong

Gastrin-releasing peptide receptor (GRPR) is overexpressed in human prostate cancer and is being used as a target for molecular imaging. In this study, we report on the direct comparison of 3 novel GRPR-targeted radiolabeled tracers: Al18F-JMV5132, 68Ga-JMV5132, and 68Ga-JMV4168 (JMV5132 is NODA-MPAA-βAla-βAla-[H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2], JMV4168 is DOTA-βAla-βAla-[H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2], and NODA-MPAA is 2-[4-(carboxymethyl)-7-{[4-(carboxymethyl)phenyl]methyl}-1,4,7-triazacyclononan-1-yl]acetic acid). Methods: The GRPR antagonist JMV594 (H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) was conjugated to NODA-MPAA for labeling with Al18F. JMV5132 was radiolabeled with 68Ga and 18F, and JMV4168 was labeled with 68Ga for comparison. The inhibitory concentration of 50% values for binding GRPR of JMV4168, JMV5132, natGa-JMV4168, and natGa-JMV5132 were determined in a competition-binding assay using GRPR-overexpressing PC-3 tumors. The tumor-targeting characteristics of the compounds were assessed in mice bearing subcutaneous PC-3 xenografts. Small-animal PET/CT images were acquired, and tracer biodistribution was determined by ex vivo measurements. Results: JMV5132 was labeled with 18F in a novel 1-pot, 1-step procedure within 20 min, without need for further purification and resulting in a specific activity of 35 MBq/nmol. Inhibitory concentration of 50% values (in nM) for GRPR binding of JMV5132, JMV4168, natGa-JMV5132, natGa-JMV4168, and AlnatF-JMV5132 were 6.8 (95% confidence intervals [CIs], 4.6–10.0), 13.2 (95% CIs, 5.9–29.3), 3.0 (95% CIs, 1.5–6.0), 3.2 (95% CIs, 1.8–5.9), and 10.0 (95% CIs, 6.3–16.0), respectively. In mice with subcutaneous PC-3 xenografts, all tracers cleared rapidly from the blood, exclusively via the kidneys for 68Ga-JMV4168 and partially hepatobiliary for 68Ga-JMV5132 and Al18F-JMV5132. Two hours after injection, the uptake of 68Ga-JMV4168, 68Ga-JMV5132, and Al18F-JMV5132 in PC-3 tumors was 5.96 ± 1.39, 5.24 ± 0.29, 5.30 ± 0.98 (percentage injected dose per gram), respectively. GRPR specificity was confirmed by significantly reduced tumor uptake of the 3 tracers after coinjection of a 100-fold excess of unlabeled JMV4168 or JMV5132. Small-animal PET/CT clearly visualized PC-3 tumors, with the highest resolution observed for Al18F-JMV5132. Conclusion: JMV5132 could be rapidly and efficiently labeled with 18F. Al18F-JMV5132, 68Ga-JMV5132, and 68Ga-JMV4168 all showed comparable high and specific accumulation in GRPR-positive PC-3 tumors. These new PET tracers are promising candidates for future clinical translation.


British Journal of Cancer | 2013

Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results

Rafke Schoffelen; Otto C. Boerman; David M. Goldenberg; Robert M. Sharkey; C.M.L. van Herpen; Gerben M. Franssen; William J. McBride; Chien-Hsing Chang; Edmund A. Rossi; W.T.A. van der Graaf; Wim J.G. Oyen

Background:Radiolabelled antibody targeting of cancer is limited by slow blood clearance. Pretargeting with a non-radiolabelled bispecific monoclonal antibody (bsMAb) followed by a rapidly clearing radiolabelled hapten peptide improves tumour localisation. The primary goals of this first pretargeting study in patients with the anti-CEACAM5 × anti-hapten (HSG) bsMAb, TF2, and the radiolabelled hapten-peptide, IMP288, were to assess optimal pretargeting conditions and safety in patients with metastatic colorectal cancer (CRC).Methods:Different dose schedules were studied in four cohorts of five patients: (1) shortening the interval between the bsMAb and peptide administration (5 days vs 1 day), (2) escalating the TF2 dose (from 75 to 150 mg), and (3) reducing the peptide dose (from 100 to 25 μg). After confirmation of tumour targeting by 111In-IMP288, patients were treated with a bsMAb/177Lu-IMP288 cycle.Results:Rapid and selective tumour targeting of the radiolabelled peptide was visualised within 1 h, with high tumour-to-tissue ratios (>20 at 24 h). Improved tumour targeting was achieved with a 1-day interval between the administration of the bsMAb and the peptide and with the 25-μg peptide dose. High 177Lu-IMP288 doses (2.5–7.4 GBq) were well tolerated, with some manageable TF2 infusion reactions, and transient grades 3–4 thrombocytopaenia in 10% of the patients who received 177Lu-IMP288.Conclusion:This phase I study demonstrates for the first time that pretargeting with bsMAb TF2 and radiolabelled IMP288 in patients with CEA-expressing CRC is feasible and safe. With this pretargeting method, tumours are specifically and rapidly targeted.


Molecular Pharmaceutics | 2015

Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates.

Chuangyan Zhai; Dominik Summer; Christine Rangger; Gerben M. Franssen; Peter Laverman; Hubertus Haas; Milos Petrik; Roland Haubner; Clemens Decristoforo

Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents.


Molecular Imaging and Biology | 2014

68Ga-Triacetylfusarinine C and 68Ga-Ferrioxamine E for Aspergillus Infection Imaging: Uptake Specificity in Various Microorganisms

Milos Petrik; Hubertus Haas; Peter Laverman; Markus Schrettl; Gerben M. Franssen; Michael Blatzer; Clemens Decristoforo

Purpose68Ga-triacetylfusarinine C (68Ga-TAFC) and 68Ga-ferrioxamine E (68Ga-FOXE) showed excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the comparison of specificity towards different microorganisms and human lung cancer cells (H1299).ProceduresThe in vitro uptake of 68Ga-TAFC and 68Ga-FOXE was studied in various fungal, bacterial and yeast cultures as well as in H1299 cells. The in vivo imaging was studied in fungal and bacterial rat infection and inflammation models.Results68Ga-TAFC and 68Ga-FOXE showed rapid uptake in A. fumigatus cultures, significantly lower in other fungal species and almost no uptake in other microorganisms and H1299 cells, except for 68Ga-FOXE in Staphylococcus aureus. 68Ga-TAFC and 68Ga-FOXE revealed rapid uptake in the lungs of A. fumigatus-infected rats, low accumulation in sterile inflammation and no uptake in bacterial abscess.ConclusionsWe have shown that 68Ga-FOXE and 68Ga-TAFC have high uptake in A. fumigatus both in vitro and in vivo. 68Ga-TAFC showed higher specificity, while 68Ga-FOXE showed higher sensitivity.

Collaboration


Dive into the Gerben M. Franssen's collaboration.

Top Co-Authors

Avatar

Otto C. Boerman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Wim J.G. Oyen

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

David M. Goldenberg

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Laverman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. McBride

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafke Schoffelen

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Winette T. A. van der Graaf

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Mark Rijpkema

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge