Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerd Benner is active.

Publication


Featured researches published by Gerd Benner.


Ultramicroscopy | 2011

Transmission electron microscopy at 20 kV for imaging and spectroscopy

Ute Kaiser; Johannes Biskupek; Jannik C. Meyer; Jens Leschner; L. Lechner; H. Rose; Michael Stöger-Pollach; Andrei N. Khlobystov; Peter Hartel; H. Müller; Maximilian Haider; S. Eyhusen; Gerd Benner

The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with a lattice transfer of 213 pm (tilted illumination). For 4 nm thick Si, the 200 reflections (271.5 pm) were directly transferred (axial illumination). We show at 20 kV that radiation-sensitive fullerenes (C(60)) within a carbon nanotube container withstand an about two orders of magnitude higher electron dose than at 80 kV. In spectroscopy mode, the monochromated low-energy electron beam enables the acquisition of EELS spectra up to very high energy losses with exceptionally low background noise. Using Si and Ge, we show that 20 kV TEM allows the determination of dielectric properties and narrow band gaps, which were not accessible by TEM so far. These very first results demonstrate that low kV TEM is an exciting new tool for determination of structural and electronic properties of different types of nano-materials.


Nano Letters | 2011

Visualizing a Homogeneous Blend in Bulk Heterojunction Polymer Solar Cells by Analytical Electron Microscopy

Martin Pfannmöller; Harald Flügge; Gerd Benner; Irene Wacker; Christoph Sommer; Michael Hanselmann; Stephan Schmale; Hans Schmidt; Fred A. Hamprecht; Torsten Rabe; Wolfgang Kowalsky; Rasmus R. Schröder

To increase efficiency of bulk heterojunctions for photovoltaic devices, the functional morphology of active layers has to be understood, requiring visualization and discrimination of materials with very similar characteristics. Here we combine high-resolution spectroscopic imaging using an analytical transmission electron microscope with nonlinear multivariate statistical analysis for classification of multispectral image data. We obtain a visual representation showing homogeneous phases of donor and acceptor, connected by a third composite phase, depending in its extent on the way the heterojunction is fabricated. For the first time we can correlate variations in nanoscale morphology determined by material contrast with measured solar cell efficiency. In particular we visualize a homogeneously blended phase, previously discussed to diminish charge separation in solar cell devices.


Journal of Electron Spectroscopy and Related Phenomena | 1997

SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II

R. Fink; M.R. Weiss; E. Umbach; D. Preikszas; H. Rose; R. Spehr; P. Hartel; W. Engel; R. Degenhardt; R. Wichtendahl; H. Kuhlenbeck; Wolfgang Erlebach; Klaus Ihmann; Robert Schlögl; Hans-Joachim Freund; A.M. Bradshaw; G. Lilienkamp; Th. Schmidt; E. Bauer; Gerd Benner

Abstract A new UHV spectromicroscope called SMART (spectromicroscope for all relevant techniques) is currently under construction for a soft X-ray undulator beamline at BESSY II. The instrument consists of a plane-grating monochromator with an aspherical focusing mirror and an ultrahigh-resolution, low-energy electron microscope containing an energy filter. It can be used as a photoemission microscope for a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and has a calculated spatial resolution of better than 1 nm. A maximum energy resolution of about 0.1 eV will be provided by a corrected omega filter. The high lateral resolution of the electron microscope will be achieved through the correction of the chromatic and spherical aberrations of the objective lens by means of an electrostatic mirror in combination with a corrected magnetic beam separator. An additional electron source placed on the other side of the beam separator opposite the electrostatic mirror will also allow LEEM, MEM and small-spot LEED investigations to be carried out. The basic ideas, the various modes of operation and the electron optical design of the instrument are outlined.


Microscopy and Microanalysis | 2006

SESAM: Exploring the frontiers of electron microscopy

Christoph T. Koch; Wilfried Sigle; R. Höschen; M. Rühle; Erik Essers; Gerd Benner; M. Matijevic

We report on the sub-electron-volt-sub-angstrom microscope (SESAM), a high-resolution 200-kV FEG-TEM equipped with a monochromator and an in-column MANDOLINE filter. We report on recent results obtained with this instrument, demonstrating its performance (e.g., 87-meV energy resolution at 10-s exposure time, or a transmissivity of the energy filter of T1 ev = 11,000 nm2). New opportunities to do unique experiments that may advance the frontiers of microscopy in areas such as energy-filtered TEM, spectroscopy, energy-filtered electron diffraction and spectroscopic profiling are also discussed.


Surface Review and Letters | 2002

XPEEM WITH ENERGY-FILTERING: ADVANTAGES AND FIRST RESULTS FROM THE SMART PROJECT

U. Groh; R. Fink; E. Umbach; O. Schaff; W. Engel; B. Richter; H. Kuhlenbeck; R. Schl; A. M. Bradshaw; Dirk Preikszas; Peter Hartel; R. Spehr; Harald Rose; Angewandte Physik; G. Lilienkamp; E. Bauer; Gerd Benner

The second development step of the SMART project, i.e. an energy-filtered but not yet corrected photoelectron emission microscope, operates at the undulator U49/1-PGM beamline at BESSY II. It already demonstrates the variety of methods of the final version: microscopy, spectroscopy and electron diffraction. Some recent experimental results are reported for these three operation modes. In addition, the theoretical improvement of lateral resolution and transmission of PEEMs in general by using an energy filter is discussed for systems without and with aberration correction.


Surface Review and Letters | 1998

SMART: An Aberration-Corrected XPEEM/LEEM with Energy Filter

R. Wichtendahl; R. Fink; H. Kuhlenbeck; Dirk Preikszas; Harald Rose; R. Spehr; Peter Hartel; W. Engel; Robert Schlögl; Hans-Joachim Freund; A. M. Bradshaw; G. Lilienkamp; Th. Schmidt; E. Bauer; Gerd Benner; E. Umbach

A new UHV spectroscopic X-ray photoelectron emission and low energy electron microscope is presently under construction for the installation at the PM-6 soft X-ray undulator beamline at BESSY II. Using a combination of a sophisticated magnetic beam splitter and an electrostatic tetrode mirror, the spherical and chromatic aberrations of the objective lens are corrected and thus the lateral resolution and sensitivity of the instrument improved. In addition a corrected imaging energy filter (a so-called omega filter) allows high spectral resolution (ΔE=0.1 eV) in the photoemission modes and back-ground suppression in LEEM and small-spot LEED modes. The theoretical prediction for the lateral resolution is 5 A; a realistic goal is about 2 nm. Thus, a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and electron diffraction (LEED, LEEM) or reflection techniques (MEM) will be available with spatial resolution unreached so far.


EPL | 2012

Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer

M. K. Kinyanjui; Christian Kramberger; T. Pichler; Jannik C. Meyer; P. Wachsmuth; Gerd Benner; Ute Kaiser

In low-dimensional systems, a detailed understanding of plasmons and their dispersion relation is crucial for applying their optical response in the field of plasmonics. Electron energy-loss spectroscopy is a direct probe of these excitations. Here we report on electron energy-loss spectroscopy results on the dispersion of the ? plasmons in free-standing graphene monolayers at the momentum range of 0?|q|?0.5???1 and parallel to the ?-M direction of the graphene Brillouin zone. In contrast to the parabolic dispersion in graphite and in good agreement with theoretical predictions of a 2D electron gas of Dirac electrons, linear ? plasmon dispersion is observed. As with previous EELS results obtained from single-wall carbon nanotubes, this can be explained by local-field effects in the anisotropic 2D system yielding a significant contribution of the low-energy band structure on the high-energy ? plasmon response.


Ultramicroscopy | 2011

In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate

B. Barton; Daniel Rhinow; Andreas Walter; Rasmus R. Schröder; Gerd Benner; E. Majorovits; M. Matijevic; H Niebel; H. Müller; M. Haider; Manfred Lacher; Sam Schmitz; Peter Holik; Werner Kühlbrandt

We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C(s) corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature.


Ultramicroscopy | 2003

Laterally resolved EELS for ELNES mapping of the Fe L2,3- and O K-edge

Ute Golla-Schindler; Gerd Benner; Andrew Putnis

Nowadays fingerprinting techniques are well established for phase analysis. One of the common problems is the accurate calibration of the energy scale to compare the electron energy loss (ELNES) and to determine the energy shift precisely. One solution to this problem is laterally resolved electron energy loss spectroscopy (EELS), which involves orienting the specimen area or structure of interest, parallel to the energy dispersive direction and dispersing the intensity across the interface as a function of energy. This ELNES information can now be used to quantify and map changes in the electronic environment. The most critical instrumental performance for ELNES investigations is the available energy resolution, which for our instrument was estimated using the 0.5eV splitting of the Mn L(3)-edge of the mineral bixbyite. An ideal test sample for the ELNES investigations is a titanohematite, a solid solution between ilmenite (FeTiO(3)), with Fe in a divalent oxidation state, and hematite (Fe(2)O(3)) with Fe in a trivalent oxidation state. Using energy filtered imaging with a slit width of 4eV it is possible to map the Fe(2+)/Fe(3+) ratio as well as the near-edge structure of the O(K) signal and correlate these ELNES maps with a spatial resolution of a few nanometres. Quantitative compositional mapping on a nanometre scale was obtained by electron spectroscopic imaging. Quantitative point analyses also yield the chemical composition and the valence states. The precise knowledge of the energy shift and near edge structure enables us to select the characteristic ELNES structure and calculate jump ratio images. This yields quantitative valence state maps by using the Fe L(2,3)-edge, as well as phase maps by using the O K-edge.


Microscopy and Microanalysis | 2010

Sub-angstrom low-voltage performance of a monochromated, aberration-corrected transmission electron microscope.

David C. Bell; Christopher J. Russo; Gerd Benner

Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Angstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.

Collaboration


Dive into the Gerd Benner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hartel

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge