Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerd Leitinger is active.

Publication


Featured researches published by Gerd Leitinger.


Molecular Pharmaceutics | 2014

Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model To Study Transport of Nanoparticles

Christa Schimpel; Birgit J. Teubl; Markus Absenger; Claudia Meindl; Eleonore Fröhlich; Gerd Leitinger; Andreas Zimmer; Eva Roblegg

Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems.


Toxicology in Vitro | 2013

Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols

Eleonore Fröhlich; Gudrun Bonstingl; Anita Höfler; Claudia Meindl; Gerd Leitinger; Thomas R. Pieber; Eva Roblegg

Highlights ► A new VITROCELL – Pariboy system was evaluated for testing of aerosolized NPs. ► Deposition rates differed between marker compounds and NPs. ► The manual aerosolizer MicroSprayer was suitable for cytotoxicity testing of NPs. ► Polystyrene nanoparticles acted more cytotoxic as aerosols than as suspensions.


International Journal of Nanomedicine | 2012

Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes

Daniela Frascione; Clemens Diwoky; Gunter Almer; Peter Opriessnig; Caroline Vonach; Kerstin Gradauer; Gerd Leitinger; Harald Mangge; Rudolf Stollberger; Ruth Prassl

Background Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magnetic and/or paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI). MLs have an advantage over free magnetic nanocores, in that various functional groups can be attached to the surface of liposomes for ligand-specific targeting. We have synthesized PEG-coated sterically-stabilized magnetic liposomes (sMLs) containing ultrasmall superparamagnetic iron oxides (USPIOs) with the aim of generating stable liposomal carriers equipped with a high payload of USPIOs for enhanced MRI contrast. Methods Regarding iron oxide nanoparticles, we have applied two different commercially available surface-coated USPIOs; sMLs synthesized and loaded with USPIOs were compared in terms of magnetization and colloidal stability. The average diameter size, morphology, phospholipid membrane fluidity, and the iron content of the sMLs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence polarization, and absorption spectroscopy, respectively. A colorimetric assay using potassium thiocyanate (KSCN) was performed to evaluate the encapsulation efficiency (EE%) to express the amount of iron enclosed into a liposome. Subsequently, MRI measurements were carried out in vitro in agarose gel phantoms to evaluate the signal enhancement on T1- and T2-weighted sequences of sMLs. To monitor the biodistribution and the clearance of the particles over time in vivo, sMLs were injected in wild type mice. Results DLS revealed a mean particle diameter of sMLs in the range between 100 and 200 nm, as confirmed by TEM. An effective iron oxide loading was achieved just for one type of USPIO, with an EE% between 74% and 92%, depending on the initial Fe concentration (being higher for lower amounts of Fe). MRI measurements demonstrated the applicability of these nanostructures as MRI probes. Conclusion Our results show that the development of sMLs is strictly dependent on the physicochemical characteristics of the nanocores. Once established, sMLs can be further modified to enable noninvasive targeted molecular imaging.


Journal of Applied Toxicology | 2015

Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells

Mirta Milić; Gerd Leitinger; Ivan Pavičić; Maja Zebić Avdičević; Slaven Dobrović; Walter Goessler; Ivana Vinković Vrček

The rapid progress and early commercial acceptance of silver‐based nanomaterials is owed to their biocidal activity. Besides embracing the antimicrobial potential of silver nanoparticles (AgNPs), it is imperative to give special attention to the potential adverse health effects of nanoparticles owing to prolonged exposure. Here, we report a detailed study on the in vitro interactions of citrate‐coated AgNPs with porcine kidney (Pk15) cells. As uncertainty remains whether biological/cellular responses to AgNPs are solely as a result of the release of silver ions or whether the AgNPs themselves have toxic effects, we investigated the effects of Ag+ on Pk15 cells for comparison. Next, we investigated the cellular uptake of both AgNPs and Ag+ in Pk15 cells at various concentrations applied. The detected Ag contents in cells exposed to 50 mg l−1 AgNPs and 50 mg l−1 Ag+ were 209 and 25 µg of Ag per 106 cells, respectively. Transmission electron microscopy (TEM) images indicated that the Pk15 cells internalized AgNPs by endocytosis. Both forms of silver, nano and ionic, decreased the number of viable Pk15 cells after 24 h in a dose‐dependent manner. In spite of a significant uptake into the cells, AgNPs had only insignificant toxicity at concentrations lower than 25 mg l−1, whereas Ag+ exhibited a significant decrease in cell viability at one‐fifth of this concentration. The Comet assay suggested that a rather high concentration of AgNP (above 25 mg l−1) is able to induce genotoxicity in Pk15 cells. Further studies must seek deeper understanding of AgNP behavior in biological media and their interactions with cellular membranes. Copyright


Journal of Neurotrauma | 2013

More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins.

Silke Patz; Christa Trattnig; Gerda Grünbacher; Birgit Ebner; Christian Gülly; Alexandra Novak; Beate Rinner; Gerd Leitinger; Markus Absenger; Oana A. Tomescu; Gerhard G. Thallinger; Ulrike Fasching; Sonja Wissa; Juan Archelos-Garcia; Ute Schäfer

Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with neuronal RNA granules and miRNAs known to regulate neuronal processes. Small RNA molecules constituted 50% of the shuttled ribonucleic acid. Using microarray analysis, we identified 81 mature miRNA molecules in CSF microparticles. Microparticles from brain injured patients were more abundant than in non-injured subjects and contained distinct genetic information suggesting that they play a role in the adaptive response to injury. Notably, miR-9 and miR-451 were differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ.


Journal of Cell Science | 2007

Phosphorylation of synapsin domain A is required for post-tetanic potentiation

Ferdinando Fiumara; Chiara Milanese; Anna Corradi; Silvia Giovedì; Gerd Leitinger; Andrea Menegon; Pier Giorgio Montarolo; Fabio Benfenati; Mirella Ghirardi

Post-tetanic potentiation (PTP) is a form of homosynaptic plasticity important for information processing and short-term memory in the nervous system. The synapsins, a family of synaptic vesicle (SV)-associated phosphoproteins, have been implicated in PTP. Although several synapsin functions are known to be regulated by phosphorylation by multiple protein kinases, the role of individual phosphorylation sites in synaptic plasticity is poorly understood. All the synapsins share a phosphorylation site in the N-terminal domain A (site 1) that regulates neurite elongation and SV mobilization. Here, we have examined the role of phosphorylation of synapsin domain A in PTP and other forms of short-term synaptic enhancement (STE) at synapses between cultured Helix pomatia neurons. To this aim, we cloned H. pomatia synapsin (helSyn) and overexpressed GFP-tagged wild-type helSyn or site-1-mutant helSyn mutated in the presynaptic compartment of C1-B2 synapses. We found that PTP at these synapses depends both on Ca2+/calmodulin-dependent and cAMP-dependent protein kinases, and that overexpression of the non-phosphorylatable helSyn mutant, but not wild-type helSyn, specifically impairs PTP, while not altering facilitation and augmentation. Our findings show that phosphorylation of site 1 has a prominent role in the expression of PTP, thus defining a novel role for phosphorylation of synapsin domain A in short-term homosynaptic plasticity.


International Journal of Nanomedicine | 2012

Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties

Kerstin Gradauer; Caroline Vonach; Gerd Leitinger; Dagmar Kolb; Eleonore Fröhlich; Eva Roblegg; Andreas Bernkop-Schnürch; Ruth Prassl

Aim To develop mucoadhesive liposomes by anchoring the polymer chitosan-thioglycolic acid (chitosan-TGA) to the liposomal surface to target intestinal mucosal membranes. Methods Liposomes consisting of phosphatidylcholine (POPC) and a maleimide-functionalized lipid were incubated with chitosan-TGA, leading to the formation of a thioether bond between free SH-groups of the polymer and maleimide groups of the liposome. Uncoated and newly generated thiomer-coated liposomes were characterized according to their size, zeta potential, and morphology using photon correlation spectroscopy and transmission electron microscopy. The release behavior of calcitonin and the fluorophore/quencher-couple ANTS/DPX (8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis- pyridinium bromide) from coated and uncoated liposomes, was investigated over 24 hours in simulated gastric and intestinal fluids. To test the mucoadhesive properties of thiomer-coated and uncoated liposomes in-vitro, we used freshly excised porcine small intestine. Results Liposomes showed a concentration-dependent increase in size – from approximately 167 nm for uncoated liposomes to 439 nm for the highest thiomer concentration used in this study. Likewise, their zeta potentials gradually increased from about −38 mV to +20 mV, clearly indicating an effective coupling of chitosan-TGA to the surface of liposomes. As a result of mucoadhesion tests, we found an almost two-fold increase in the mucoadhesion of coupled liposomes relative to uncoupled ones. With fluorescence microscopy, we saw a tight adherence of coated particles to the intestinal mucus. Conclusion Taken together, our current results indicate that thiomer-coated liposomes possess a high potential to be used as an oral drug-delivery system.


The Journal of Comparative Neurology | 2000

Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine.

F. Claire Rind; Gerd Leitinger

The lobula giant movement detector (LGMD1 and ‐2) neurons in the locust visual system are parts of motion‐sensitive pathways that detect objects approaching on a collision course. The dendritic processes of the LGMD1 and ‐2 in the lobula are localised to discrete regions, allowing the dendrites of each neuron to be distinguished uniquely. As was described previously for the LGMD1, the afferent processes onto the LGMD2 synapse directly with each other, and these synapses are immediately adjacent to their outputs onto the LGMD2. Here we present immunocytochemical evidence, using antibodies against choline–protein conjugates and a polyclonal antiserum against choline acetyltransferase (ChAT; Chemicon Ab 143), that the LGMD1 and ‐2 and the retinotopic units presynaptic to them contain acetylcholine (ACh). It is proposed that these retinotopic units excite the LGMD1 or ‐2 but inhibit each other. It is well established that ACh has both excitatory and inhibitory effects and may provide the substrate for a critical race in the LGMD1 or ‐2, between excitation caused by edges moving out over successive photoreceptors, and inhibition spreading laterally resulting in the selective response to objects approaching on a collision course. In the optic lobe, ACh was also found to be localised in discrete layers of the medulla and in the outer chiasm between the lamina and medulla. In the brain, the antennal lobes contained neurons that reacted positively for ACh. Silver‐ or haematoxylin and eosin‐stained sections through the optic lobe confirmed the identities of the positively immunostained neurons. J. Comp. Neurol. 423:389–401, 2000.


Nanotoxicology | 2015

The buccal mucosa as a route for TiO2 nanoparticle uptake

Birgit J. Teubl; Gerd Leitinger; Marc Schneider; Claus-Michael Lehr; Eleonore Fröhlich; Andreas Zimmer; Eva Roblegg

Abstract The oral cavity, although part of the aero-digestive tract, is still neglected in terms of risk assessment with respect to nanoparticle uptake. If nanoparticles enter the oral cavity, either via oral products or inhaled materials, it is not clear whether they rapidly interact with the mucosae or are swallowed. In this study, interactions of three distinct titanium dioxide (TiO2) particles (i.e. NM 100, NM 101 and NM 105) with oral tissues are presented. Physicochemical properties were addressed in relevant media, and particle penetration was investigated with an ex vivo model using porcine mucosa. To avoid modification of the particle surfaces via labeling, multiphoton microscopy was introduced as an accurate method to detect TiO2 particles within the tissue. The spatiotemporal aspects of nanoparticle uptake, as well as the intracellular localization in human epithelial cells, were studied and potential toxic effects were evaluated. Although TiO2 particles formed large aggregates once dispersed in media, 10–50% remained in the nanoscale range, rapidly interacting with the mucus layer and infecting the epithelium. However, differences in the penetration depth were observed depending on the particle characteristics. NM 100 and NM 105 were found in both the upper part and the lower part of the buccal mucosa, while NM 101 (smallest particle sizes) only penetrated the upper parts. Transport studies revealed that TiO2 nanoparticles were found in vesicles, as well as freely distributed in the cytoplasm. Cell viability/integrity was not affected negatively; however, NM 105 triggered the production of reactive oxygen species. These data clearly suggest that the oral cavity should be considered in further risk assessment studies.


Circulation | 2014

Early Remodeling of Perinuclear Ca2+ Stores and Nucleoplasmic Ca2+ Signaling During the Development of Hypertrophy and Heart Failure

Senka Ljubojevic; Snjezana Radulovic; Gerd Leitinger; Simon Sedej; Michael Sacherer; Michael Holzer; Claudia Winkler; Elisabeth Pritz; Tobias Mittler; Albrecht Schmidt; Michael Sereinigg; Paulina Wakula; Spyros Zissimopoulos; Egbert Bisping; Heiner Post; Gunther Marsche; Julie Bossuyt; Donald M. Bers; Jens Kockskämper; Burkert Pieske

Background— A hallmark of heart failure is impaired cytoplasmic Ca2+ handling of cardiomyocytes. It remains unknown whether specific alterations in nuclear Ca2+ handling via altered excitation-transcription coupling contribute to the development and progression of heart failure. Methods and Results— Using tissue and isolated cardiomyocytes from nonfailing and failing human hearts, as well as mouse and rabbit models of hypertrophy and heart failure, we provide compelling evidence for structural and functional changes of the nuclear envelope and nuclear Ca2+ handling in cardiomyocytes as remodeling progresses. Increased nuclear size and less frequent intrusions of the nuclear envelope into the nuclear lumen indicated altered nuclear structure that could have functional consequences. In the (peri)nuclear compartment, there was also reduced expression of Ca2+ pumps and ryanodine receptors, increased expression of inositol-1,4,5-trisphosphate receptors, and differential orientation among these Ca2+ transporters. These changes were associated with altered nucleoplasmic Ca2+ handling in cardiomyocytes from hypertrophied and failing hearts, reflected as increased diastolic Ca2+ levels with diminished and prolonged nuclear Ca2+ transients and slowed intranuclear Ca2+ diffusion. Altered nucleoplasmic Ca2+ levels were translated to higher activation of nuclear Ca2+/calmodulin-dependent protein kinase II and nuclear export of histone deacetylases. Importantly, the nuclear Ca2+ alterations occurred early during hypertrophy and preceded the cytoplasmic Ca2+ changes that are typical of heart failure. Conclusions— During cardiac remodeling, early changes of cardiomyocyte nuclei cause altered nuclear Ca2+ signaling implicated in hypertrophic gene program activation. Normalization of nuclear Ca2+ regulation may therefore be a novel therapeutic approach to prevent adverse cardiac remodeling.

Collaboration


Dive into the Gerd Leitinger's collaboration.

Top Co-Authors

Avatar

Ruth Prassl

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Pritz

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Meindl

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Karin Kornmueller

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Bernhard Lehofer

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge