Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerd Wohlfahrt is active.

Publication


Featured researches published by Gerd Wohlfahrt.


Acta Crystallographica Section D-biological Crystallography | 1999

1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes.

Gerd Wohlfahrt; Susanne Witt; Jörg Hendle; Dietmar Schomburg; Henryk M. Kalisz; Hans-Jürgen Hecht

Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution, has been refined at 1.9 A resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 A resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 A for main-chain atoms and show four N-glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force-field methods. The resulting model is consistent with results from site-directed mutagenesis experiments and shows the beta-D-glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as alpha-D-glucose, mannose and galactose, which are poor substrates for the enzyme, and 2-deoxy-D-glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, delta-gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.


Biochemical Journal | 2007

The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket

Monika Suchanek; Riikka Hynynen; Gerd Wohlfahrt; Markku Lehto; Marie Johansson; Hannu Saarinen; Anna Radzikowska; Christoph Thiele; Vesa M. Olkkonen

OSBP (oxysterol-binding protein) homologues, ORPs (OSBP-related proteins), constitute a 12-member family in mammals. We employed an in vitro [3H]25OH (25-hydroxycholesterol)-binding assay with purified recombinant proteins as well as live cell photo-cross-linking with [3H]photo-25OH and [3H]photoCH (photo-cholesterol), to investigate sterol binding by the mammalian ORPs. ORP1 and ORP2 [a short ORP consisting of an ORD (OSBP-related ligand-binding domain) only] were in vitro shown to bind 25OH. GST (glutathione S-transferase) fusions of the ORP1L [long variant with an N-terminal extension that carries ankyrin repeats and a PH domain (pleckstrin homology domain)] and ORP1S (short variant consisting of an ORD only) variants bound 25OH with similar affinity (ORP1L, K(d)=9.7x10(-8) M; ORP1S, K(d)=8.4 x10(-8) M), while the affinity of GST-ORP2 for 25OH was lower (K(d)=3.9x10(-6) M). Molecular modelling suggested that ORP2 has a sterol-binding pocket similar to that of Saccharomyces cerevisiae Osh4p. This was confirmed by site-directed mutagenesis of residues in proximity of the bound sterol in the structural model. Substitution of Ile249 by tryptophan or Lys150 by alanine markedly inhibited 25OH binding by ORP2. In agreement with the in vitro data, ORP1L, ORP1S, and ORP2 were cross-linked with photo-25OH in live COS7 cells. Furthermore, in experiments with either truncated cDNAs encoding the OSBP-related ligand-binding domains of the ORPs or the full-length proteins, photo-25OH was bound to OSBP, ORP3, ORP4, ORP5, ORP6, ORP7, ORP8, ORP10 and ORP11. In addition, the ORP1L variant and ORP3, ORP5, and ORP8 were cross-linked with photoCH. The present study identifies ORP1 and ORP2 as OSBPs and suggests that most of the mammalian ORPs are able to bind sterols.


Molecular and Cellular Biochemistry | 2004

The chemical mechanism of action of glucose oxidase from Aspergillus niger

Gerd Wohlfahrt; Svetlana Trivić; Jasmina Zeremski; Draginja Peričin; Vladimir Leskovac

Glucose oxidase from Aspergillus niger (EC 1.1.3.4) is able to catalyze the oxidation of β-D-glucose with p-benzoquinone, methyl-1,4-benzoquinone, 1,2-naphthoquinone, 1,2-naphthoquinone-4-sulfonic acid, potassium ferricyanide, phenazine methosulfate, and 2,6-dichloroindophenol. In this work, the steady-state kinetic parameters, V1/KB, for reactions of these substrates were collected from pH 2.5–8. Further, the molecular models of the enzymes active site were constructed for the free enzyme in the oxidized state, the complex of β-D-glucose with the oxidized enzyme, the complex of reduced enzyme with methyl-1,4-benzoquinone, the reduced enzyme plus 1,2-naphthoquinone-4-sulfonic acid, oxidized enzyme plus reduced 1,2-naphthoquinone-4-sulfonic acid (hydroquinone anion), and oxidized enzyme plus fully reduced 1,2-naphthoquinone-4-sulfonic acid.Combining the steady-state kinetic and structural data, it was concluded that Glu412 bound to His559, in the active site of enzyme, modulates powerfully its catalytic activity by affecting all the rate constants in the reductive and the oxidative half-reaction of the catalytic cycle. His516 is the catalytic base in the oxidative and the reductive part of the catalytic cycle. It was estimated that the pKa of Glu412 (bound to His559) in the free reduced enzyme is 3.4, and the pKa of His516 in the free reduced enzyme is 6.9.


Scientific Reports | 2015

Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies.

Anu-Maarit Moilanen; Reetta Riikonen; Riikka Oksala; Laura Ravanti; Eija Aho; Gerd Wohlfahrt; Pirjo Nykänen; Olli Törmäkangas; Jorma J. Palvimo; Pekka Kallio

Activation of androgen receptor (AR) is crucial for prostate cancer growth. Remarkably, also castration-resistant prostate cancer (CRPC) is dependent on functional AR, and several mechanisms have been proposed to explain the addiction. Known causes of CRPC include gene amplification and overexpression as well as point mutations of AR. We report here the pharmacological profile of ODM-201, a novel AR inhibitor that showed significant antitumor activity and a favorable safety profile in phase 1/2 studies in men with CRPC. ODM-201 is a full and high-affinity AR antagonist that, similar to second-generation antiandrogens enzalutamide and ARN-509, inhibits testosterone-induced nuclear translocation of AR. Importantly, ODM-201 also blocks the activity of the tested mutant ARs arising in response to antiandrogen therapies, including the F876L mutation that confers resistance to enzalutamide and ARN-509. In addition, ODM-201 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a castration-resistant VCaP xenograft model. In contrast to other antiandrogens, ODM-201 shows negligible brain penetrance and does not increase serum testosterone levels in mice. In conclusion, ODM-201 is a potent AR inhibitor that overcomes resistance to AR-targeted therapies by antagonizing both overexpressed and mutated ARs. ODM-201 is currently in a phase 3 trial in CRPC.


Cellular and Molecular Life Sciences | 2011

Sterol binding by OSBP-related protein 1L regulates late endosome motility and function.

Terhi Vihervaara; Riikka-Liisa Uronen; Gerd Wohlfahrt; Ingemar Björkhem; Elina Ikonen; Vesa M. Olkkonen

ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560–563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560–563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE–ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560–563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [3H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.


Proteins | 2001

Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism

Rotem Gilboa; A. Spungin-Bialik; Gerd Wohlfahrt; Dietmar Schomburg; Shmaryahu Blumberg; Gil Shoham

Streptomyces griseus aminopeptidase (SGAP) is a double‐zinc exopeptidase with a high preference toward large hydrophobic amino‐terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X‐ray crystallographic analysis of the SGAP complexes with methionine (1.53 Å resolution), leucine (1.70 Å resolution), and phenylalanine (1.80 Å resolution). These three high‐resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme‐substrate and enzyme‐product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme‐substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc‐bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP. Proteins 2001;44:490–504.


MedChemComm | 2015

Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects

Isidro Cortes-Ciriano; Qurrat Ul Ain; Vigneshwari Subramanian; Eelke B. Lenselink; Oscar Méndez-Lucio; Adriaan P. IJzerman; Gerd Wohlfahrt; Peteris Prusis; Thérèse E. Malliavin; Gerard J. P. van Westen; Andreas Bender

Proteochemometric (PCM) modelling is a computational method to model the bioactivity of multiple ligands against multiple related protein targets simultaneously. Hence it has been found to be particularly useful when exploring the selectivity and promiscuity of ligands on different proteins. In this review, we will firstly provide a brief introduction to the main concepts of PCM for readers new to the field. The next part focuses on recent technical advances, including the application of support vector machines (SVMs) using different kernel functions, random forests, Gaussian processes and collaborative filtering. The subsequent section will then describe some novel practical applications of PCM in the medicinal chemistry field, including studies on GPCRs, kinases, viral proteins (e.g. from HIV) and epigenetic targets such as histone deacetylases. Finally, we will conclude by summarizing novel developments in PCM, which we expect to gain further importance in the future. These developments include adding three-dimensional protein target information, application of PCM to the prediction of binding energies, and application of the concept in the fields of pharmacogenomics and toxicogenomics. This review is an update to a related publication in 2011 and it mainly focuses on developments in the field since then.


Journal of Computer-aided Molecular Design | 1998

Aspects of the mechanism of catalysis of glucose oxidase: A docking, molecular mechanics and quantum chemical study

Michael Meyer; Gerd Wohlfahrt; Jörg Knäblein; Dietmar Schomburg

The complex structure of glucose oxidase (GOX) with the substrate glucose was determined using a docking algorithm and subsequent molecular dynamics simulations. Semiempirical quantum chemical calculations were used to investigate the role of the enzyme and FAD co-enzyme in the catalytic oxidation of glucose. On the basis of a small active site model, substrate binding residues were determined and heats of formation were computed for the enzyme substrate complex and different potential products of the reductive half reaction. The influence of the protein environment on the active site model was estimated with a point charge model using a mixed QM/MM method. Solvent effects were estimated with a continuum model. Possible modes of action are presented in relation to experimental data and discussed with respect to related enzymes. The calculations indicate that the redox reaction of GOX differs from the corresponding reaction of free flavins as a consequence of the protein environment. One of the active site histidines is involved in substrate binding and stabilization of potential intermediates, whereas the second histidine is a proton acceptor. The former one, being conserved in a series of oxidoreductases, is also involved in the stabilization of a C4a-hydroperoxy dihydroflavin in the course of the oxidative half reaction.


The Prostate | 2008

Novel small molecule inhibitors for prostate‐specific antigen

Hannu Koistinen; Gerd Wohlfahrt; Johanna M. Mattsson; Ping Wu; Juhani Lahdenperä; Ulf-Håkan Stenman

Prostate‐specific antigen (PSA or KLK3) has been shown to inhibit angiogenesis, but it might also have tumor promoting activities. Thus, it may be possible to modulate prostate cancer growth by stimulating or inhibiting the activity of PSA. To this end we have previously identified peptides that stimulate the activity of PSA. As peptides have several limitations as drug molecules, we screened a chemical library to find drug‐like compounds that could be used to modulate the function(s) of PSA.


Molecular and Cellular Endocrinology | 2004

Requirements for transcriptional regulation by the orphan nuclear receptor ERRgamma

Johanna Huppunen; Gerd Wohlfahrt; Piia Aarnisalo

Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor lacking identified natural ligands. We have addressed the requirements for ERRgamma-mediated gene regulation. ERRgamma transactivates constitutively reporter genes driven by ERR response elements (ERREs) or estrogen response elements (EREs). The activation depends on an intact DNA-binding domain (DBD) and activation function-2 (AF2). ERRgamma-mediated transactivation is further enhanced by peroxisome proliferator-activated receptor coactivator-1. Interestingly, ligand-binding domain (LBD) mutations predicted to either enlarge or diminish the putative ligand-binding pocket have no effect on the transcriptional activity implying that ERRgamma activity does not depend on any ligands. Antiestrogens 4OH-tamoxifen (4OHT) and 4-hydroxytoremifene (4OHtor) inhibit the ability of ERR to transactivate ERRE and ERE reporters. In contrast, ERRgamma activates transcription at AP-1 sites in the presence of 4OHT and 4OHtor. Thus, the transcriptional activity of ERRgamma seems not to require ligand binding but is modulated by binding of certain small synthetic ligands.

Collaboration


Dive into the Gerd Wohlfahrt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietmar Schomburg

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge