Gerene M. Denning
Roy J. and Lucille A. Carver College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerene M. Denning.
Circulation Research | 2009
Tapan K. Chatterjee; Lynn L. Stoll; Gerene M. Denning; Allan L. Harrelson; Andra L. Blomkalns; Gila Idelman; Florence Rothenberg; Bonnie Neltner; Sara A. Romig-Martin; Eric W. Dickson; Steven M. Rudich; Neal L. Weintraub
Adipose tissue depots originate from distinct precursor cells, are functionally diverse, and modulate disease processes in a depot-specific manner. However, the functional properties of perivascular adipocytes, and their influence on disease of the blood vessel wall, remain to be determined. We show that human coronary perivascular adipocytes exhibit a reduced state of adipocytic differentiation as compared with adipocytes derived from subcutaneous and visceral (perirenal) adipose depots. Secretion of antiinflammatory adiponectin is markedly reduced, whereas that of proinflammatory cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1, is markedly increased in perivascular adipocytes. These depot-specific differences in adipocyte function are demonstrable in both freshly isolated adipose tissues and in vitro–differentiated adipocytes. Murine aortic arch perivascular adipose tissues likewise express lower levels of adipocyte-associated genes as compared with subcutaneous and visceral adipose tissues. Moreover, 2 weeks of high-fat feeding caused further reductions in adipocyte-associated gene expression, while upregulating proinflammatory gene expression, in perivascular adipose tissues. These changes were observed in the absence of macrophage recruitment to the perivascular adipose depot. We conclude that perivascular adipocytes exhibit reduced differentiation and a heightened proinflammatory state, properties that are intrinsic to the adipocytes residing in this depot. Dysfunction of perivascular adipose tissue induced by fat feeding suggests that this unique adipose depot is capable of linking metabolic signals to inflammation in the blood vessel wall.
Journal of Clinical Investigation | 1992
Gerene M. Denning; Lynda S. Ostedgaard; Seng H. Cheng; Alan E. Smith; Michael Welsh
Cystic fibrosis is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). To further our understanding of CFTRs function and regulation, we used confocal immunofluorescence microscopy to localize CFTR in cells stained with monoclonal antibodies against different regions of the protein: the R (regulatory) domain (M13-1), the COOH terminus (M1-4), and a predicted extracellular domain (M6-4). All three antibodies immunoprecipitated a 155-170-kD polypeptide from cells expressing CFTR. Each antibody stained HeLa and 3T3 cells expressing recombinant CFTR, but not cells lacking endogenous CFTR: HeLa, NIH-3T3, and endothelial cells. For localization studies, we used epithelial cell lines that express endogenous CFTR and have a cAMP-activated apical Cl- permeability: T84, CaCo2, and HT29 clone 19A. Our results demonstrate that CFTR is an apical membrane protein in these epithelial cells because (a) staining for CFTR resembled staining for several apical membrane markers, but differed from staining for basolateral membrane proteins; (b) thin sections of cell monolayers show staining at the apical membrane; and (c) M6-4, an extracellular domain antibody, stained the apical surface of nonpermeabilized cells. Our results do not exclude the possibility that CFTR is also located beneath the apical membrane. Increasing intracellular cAMP levels did not change the apical membrane staining pattern for CFTR. Moreover, insertion of channels by vesicle fusion with the apical membrane was not required for cAMP-mediated increases in apical membrane Cl- conductance. These results indicate that CFTR is located in the apical plasma membrane of Cl(-)-secreting epithelia, a result consistent with the conclusion that Cl TR is an apical membrane chloride channel.
Neuron | 1992
Michael J. Welsh; Matthew P. Anderson; Devra P. Rich; Herbert A. Berger; Gerene M. Denning; Lynda S. Ostedgaard; David N. Sheppard; Seng H. Cheng; Richard J. Gregory; Alan E. Smith
Michael J. Welsh,* Matthew P. Anderson,* Devra P. Rich,* Herbert A. Berger,* Gerene M. Denning,* Lynda S. Ostedgaard,* David N. Sheppard,* Seng H. Cheng,+ Richard J. Gregory,+ and Alan E. Smith+ *Howard Hughes Medical Institute Department of internal Medicine Department of Physiology and Biophysics University of Iowa College of Medicine Iowa City, Iowa 52242 +Genzyme Corporation Framingham, Massachusetts 01701
Journal of Clinical Investigation | 1980
Arthur A. Spector; John C. Hoak; Glenna L. Fry; Gerene M. Denning; L L Stoll; J B Smith
We have investigated whether changes in cellular fatty acid saturation can influence prostacyclin (PGI2) production by cultured human umbilical vein endothelial cells. As compared to control cells, those enriched with linoleic acid released 60--75% less PGI2 in response to thrombin or the calcium ionophore A23187. A similar but considerably smaller effect was observed when the cells were enriched with oleic or linolenic acid, but no reduction occurred with palmitic or linoelaidic acids. Some reduction in PGI2 release was noted as early as 1 h after exposure to linoleic acid. When the culture medium was supplemented with linoleic acid, the cell phospholipids contained four to five times more linoleate and 25--40% less arachidonate. These changes were most marked in the choline and serine plus inositol phosphoglyceride fractions. When the fatty acid composition of the cells enriched with linoleic acid was allowed to revert, there was a progressive increase in the capacity of the cells to release PGI2 in response to thrombin. The increase correlated with a reduction in linoleate content of the cell lipids, but there was no change in arachidonate content. This suggests that linoleic acid may act as an inhibitor of PGI2 production. The cultured endothelial cells were also able to produce PGI2 directly from added arachidonic acid. As the arachidonic acid concentration of the medium was raised, PGI2 formation by the linoleate-enriched cells increased relative to control cells, suggesting that the inhibition produced by linoleic acid may be competitive.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
James Rice; Lynn L. Stoll; Wei Gen Li; Gerene M. Denning; Jamie Weydert; Elizabeth Charipar; Wayne E. Richenbacher; Francis J. Miller; Neal L. Weintraub
Background—Low-level endotoxemia (ie, ≥50 pg/mL) in apparently healthy subjects was recently identified as a powerful, independent risk factor for atherosclerosis. Methods and Results—We treated human saphenous veins (HSVs) with low levels of endotoxin. Release of the proinflammatory chemokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) was measured by ELISA. Superoxide was determined by using the fluorescent probe dihydroethidium (HE), and monocyte binding was assessed with calcein-labeled U-937 cells. Three- to 4-fold increases in MCP-1 and IL-8 release were observed at endotoxin concentrations of 100 pg/mL; these increases were inhibited by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin. Studies in cultured endothelial cells suggest that the mechanism is related to inhibition of isoprenylation (ie, geranylgeranylation) rather than cholesterol formation. Endotoxin produced dose-dependent increases in HE fluorescence that were inhibited by the superoxide dismutase mimics Tiron and MnTBAP. Endotoxin potently induced U-937 cell binding to HSV; binding was inhibited by both Tiron and atorvastatin. Toll-like receptor-4 expression was detected in cultured HSV endothelial and smooth muscle cells and in intact HSV. Conclusions—Clinically relevant levels of endotoxin, as reported in ambulatory populations, have profound inflammatory effects on intact HSV. Inhibition of endotoxin-induced vascular inflammation might contribute to the beneficial effects of statins in treating atherosclerosis.
Current Pharmaceutical Design | 2006
Lynn L. Stoll; Gerene M. Denning; Neal L. Weintraub
Cardiovascular disease ranks among the leading causes of morbidity and mortality in adult populations in the Western world. Significant progress in understanding the etiology of cardiovascular disease has come from recent recognition that chronic inflammation plays a key role in its development. The principal mediators of this inflammatory response, and the mechanisms by which they work, however, are incompletely understood. Moreover, the complex nature of the inflammatory response poses significant challenges to the development of effective and targeted treatments. Potentially promising targets to reduce inflammation in atherosclerosis include Toll-like receptor (TLR) pathways and anti-inflammatory factors that modulate TLR signaling. In this review, we outline studies that provide insight into the links between cardiovascular disease and inflammation, focusing on innate immunity and endotoxin/TLR4 signaling. We also discuss the contribution of specific host immune/inflammatory responses to atherogenesis, and describe cellular signaling pathways (lipopolysaccharide-binding protein [LBP], CD14, MD-2, TLR4, MyD88, and NF-kappaB, among others) that play key roles in innate immune signaling. Finally, we discuss the therapeutic potential of modulating these cellular signaling pathways as future strategies for the prevention and treatment of cardiovascular disease, including such approaches as specific targeting of the TLR4 signaling pathway, antibiotic therapy, drug classes with broad anti-inflammatory activity (statins, thiazolidinediones), and the potential of vaccine development. Because of the complexity of the links between low-level chronic infections, inflammation, and atherosclerosis, treatment and prevention of cardiovascular disease will likely require an integrated approach that utilizes a combination of these strategies to target the underlying inflammatory processes.
American Journal of Physiology-lung Cellular and Molecular Physiology | 1998
Gerene M. Denning; Michelle A. Railsback; George T. Rasmussen; Charles D. Cox; Bradley E. Britigan
Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+ concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]cin human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]cincreases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]cincrease appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+ from intracellular stores. Ca2+ plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+ homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease.
Journal of Immunology | 2004
Lynn L. Stoll; Gerene M. Denning; Wei Gen Li; James Rice; Allan L. Harrelson; Sara A. Romig; Skuli T. Gunnlaugsson; Francis J. Miller; Neal L. Weintraub
Low-level endotoxemia has been identified as a powerful risk factor for atherosclerosis. However, little is known about the mechanisms that regulate endotoxin responsiveness in vascular cells. We conducted experiments to compare the relative responses of human coronary artery endothelial cells (HCAEC) and smooth muscle cells (HCASMC) to very low levels of endotoxin, and to elucidate the mechanisms that regulate endotoxin responsiveness in vascular cells. Endotoxin (≤1 ng/ml) caused production of chemotactic cytokines in HCAEC. Endotoxin-induced cytokine production was maximal at LPS-binding protein:soluble CD14 ratios <1, typically observed in individuals with subclinical infection; higher LPS-binding protein:soluble CD14 ratios were inhibitory. Endotoxin potently activated HCASMC, with cytokine release >10-fold higher in magnitude at >10-fold lower threshold concentrations (10–30 pg/ml) compared with HCAEC. This remarkable sensitivity of HCASMC to very low endotoxin concentrations, comparable to that found in circulating monocytes, was not due to differential expression of TLR4, which was detected in HCAEC, HCASMC, and intact coronary arteries. Surprisingly, membrane-bound CD14 was detected in seven different lines of HCASMC, conferring responsiveness to endotoxin and to lipoteichoic acid, a product of Gram-positive bacteria, in these cells. These results suggest that the low levels of endotoxin associated with increased risk for atherosclerosis are sufficient to produce inflammatory responses in coronary artery cells. Because CD14 recognizes a diverse array of inflammatory mediators and functions as a pattern recognition molecule in inflammatory cells, expression of membrane-bound CD14 in HCASMC implies a potentially broader role for these cells in transducing innate immune responses in the vasculature.
Peptides | 2008
Gerene M. Denning; Laynez W. Ackermann; Thomas J. Barna; John G. Armstrong; Lynn L. Stoll; Neal L. Weintraub; Eric W. Dickson
Enkephalins are opioid peptides that are found at high levels in the brain and endocrine tissues. Studies have shown that enkephalins play an important role in behavior, pain, cardiac function, cellular growth, immunity, and ischemic tolerance. Our global hypothesis is that enkephalins are released from non-neuronal tissues in response to brief ischemia or exercise, and that this release contributes to cardioprotection. To identify tissues that could serve as potential sources of enkephalins, we used real-time PCR, Western blot analysis, ELISA, immunofluorescence microscopy, and ex vivo models of enkephalin release. We found widespread expression of preproenkephalin (pPENK) mRNA and production of the enkephalin precursor protein proenkephalin (PENK) in rat and mouse tissues, as well as in tissues and cells from humans and pigs. Immunofluorescence microscopy with anti-enkephalin antisera demonstrated immunoreactivity in rat tissues, including heart and skeletal muscle myocytes, intestinal and kidney epithelium, and intestinal smooth muscle cells. Finally, isolated tissue studies showed that heart, skeletal muscle, and intestine released enkephalins ex vivo. Together our studies indicate that multiple non-neuronal tissues produce PENK and release enkephalins. These data support the hypothesis that non-neuronal tissues could play a role in both local and systemic enkephalin-mediated effects.
Journal of Immunology | 2005
Dwight C. Look; Lynn L. Stoll; Sara A. Romig; Alicia L. Humlicek; Bradley E. Britigan; Gerene M. Denning
Pseudomonas aeruginosa secretes numerous factors that alter host cell function and may contribute to disease pathogenesis. Among recognized virulence factors is the redox-active phenazine pyocyanin. We have recently demonstrated that the precursor for pyocyanin, phenazine-1-carboxylic acid (PCA), increases oxidant formation and alters gene expression in human airway epithelial cells. We report in this work that PCA and pyocyanin increase expression of ICAM-1 both in vivo and in vitro. Moreover, phenazines enhanced cytokine-dependent increases in IL-8 and ICAM-1. Antioxidant intervention studies indicated both similarities and differences between PCA and pyocyanin. The thiol antioxidant N-acetyl cysteine, extracellular catalase, and inducible NO synthase inhibitors inhibited ICAM-1 and IL-8 increases in response to both phenazines. However, pyocyanin was significantly more sensitive to N-acetylcysteine inhibition. Interestingly, hydroxyl radical scavengers inhibited the response to pyocyanin, but not to PCA. These studies suggest that P. aeruginosa phenazines coordinately up-regulate chemokines (IL-8) and adhesion molecules (ICAM-1) by mechanisms that are, at least in part, oxidant dependent. However, results indicate that the mechanisms by which PCA and pyocyanin exert their effects are not identical, and not all antioxidant interventions are equally effective in inhibiting phenazine-mediated proinflammatory effects.