Gergana Dobreva
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gergana Dobreva.
Neuron | 2008
Elizabeth Alcamo; Laura Chirivella; Marcel Dautzenberg; Gergana Dobreva; Isabel Fariñas; Rudolf Grosschedl; Susan K. McConnell
Satb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, beta-galactosidase-labeled axons are absent from the corpus callosum and instead descend along the corticospinal tract. Satb2 mutant neurons acquire expression of Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. Conversely, ectopic expression of Satb2 in neural stem cells markedly decreases Ctip2 expression. Finally, we find that Satb2 binds directly to regulatory regions of Ctip2 and induces changes in chromatin structure. These data suggest that Satb2 functions as a repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex.
Cell | 2006
Gergana Dobreva; Maria H. Chahrour; Marcel Dautzenberg; Laura Chirivella; Benoît Kanzler; Isabel Fariñas; Gerard Karsenty; Rudolf Grosschedl
Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differentiation and function. Multiple osteoblast-specific genes were identified as targets positively regulated by SATB2. In addition, SATB2 was found to repress the expression of several Hox genes including Hoxa2, an inhibitor of bone formation and regulator of branchial arch patterning. Molecular analysis revealed that SATB2 directly interacts with and enhances the activity of both Runx2 and ATF4, transcription factors that regulate osteoblast differentiation. This synergy was genetically confirmed by bone formation defects in Satb2/Runx2 and Satb2/Atf4 double heterozygous mice. Thus, SATB2 acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation.
EMBO Reports | 2000
Jochen Bodem; Gergana Dobreva; Urs Hoffmann-Rohrer; Sebastian Iben; Hanswalter Zentgraf; Hajo Delius; Martin Vingron; Ingrid Grummt
Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth‐dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF‐IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide‐treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF‐IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF‐IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth‐arrested cells in vitro.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Karpagam Srinivasan; Dino P. Leone; Rosalie K. Bateson; Gergana Dobreva; Yoshinori Kohwi; Terumi Kohwi-Shigematsu; Rudolf Grosschedl; Susan K. McConnell
Neurons within each layer in the mammalian cortex have stereotypic projections. Four genes—Fezf2, Ctip2, Tbr1, and Satb2—regulate these projection identities. These genes also interact with each other, and it is unclear how these interactions shape the final projection identity. Here we show, by generating double mutants of Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex genetic switch that uses mutual repression to produce subcortical or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 are critical downstream targets of Satb2 in callosal fate specification. This represents a unique role for Tbr1, implicated previously in specifying corticothalamic projections. We further show that Tbr1 expression is dually regulated by Satb2 and Ctip2 in layers 2–5. Finally, we show that Satb2 and Fezf2 regulate two disease-related genes, Auts2 (Autistic Susceptibility Gene2) and Bhlhb5 (mutated in Hereditary Spastic Paraplegia), providing a molecular handle to investigate circuit disorders in neurodevelopmental diseases.
Circulation Research | 2013
Kisho Ohtani; Cong Zhao; Gergana Dobreva; Yosif Manavski; Britta Kluge; Thomas Braun; Michael A. Rieger; Andreas M. Zeiher; Stefanie Dimmeler
Rationale: The developmental role of the H3K27 demethylases Jmjd3, especially its epigenetic regulation at target genes in response to upstream developmental signaling, is unclear. Objective: To determine the role of Jmjd3 during mesoderm and cardiovascular lineage commitment. Methods and Results: Ablation of Jmjd3 in mouse embryonic stem cells does not affect the maintenance of pluripotency and self-renewal but compromised mesoderm and subsequent endothelial and cardiac differentiation. Jmjd3 reduces H3K27me3 marks at the Brachyury promoter and facilitates the recruitment of &bgr;-catenin, which is critical for Wnt signal–induced mesoderm differentiation. Conclusions: These data demonstrate that Jmjd3 is required for mesoderm differentiation and cardiovascular lineage commitment.
Cell Stem Cell | 2010
Matthias Kieslinger; Silvia Hiechinger; Gergana Dobreva; G. Giacomo Consalez; Rudolf Grosschedl
Hematopoiesis requires the interaction of hematopoietic stem cells (HSCs) with various stromal microenvironments. Here, we examine the role of early B cell factor 2 (Ebf2), a transcription factor expressed in a subset of immature osteoblastic cells. Ebf2(-/-) mice show decreased frequencies of HSCs and lineage-committed progenitors. This defect is cell nonautonomous, as shown by the fact that transplantation of Ebf2-deficient bone marrow into wild-type hosts results in normal hematopoiesis. In coculture experiments, Ebf2(-/-) osteoblastic cells have reduced potential to support short-term proliferation of HSCs. Expression profiling of sorted Ebf2(-/-) osteoblastic cells indicated that several genes implicated in the maintenance of HSCs are downregulated relative to Ebf2(+/-) cells, whereas genes encoding secreted frizzled-related proteins are upregulated. Moreover, wild-type HSCs cocultured with Ebf2(-/-) osteoblastic cells show a reduced Wnt response relative to coculture with Ebf2(+/-) cells. Thus, Ebf2 acts as a transcriptional determinant of an osteoblastic niche that regulates the maintenance of hematopoietic progenitors, in part by modulating Wnt signaling.
Stem Cells | 2015
Tatjana Dorn; Alexander Goedel; Jason T. Lam; Jessica Haas; Qinghai Tian; Franziska Herrmann; Karin Bundschu; Gergana Dobreva; Matthias Schiemann; Ralf J. Dirschinger; Yanchun Guo; Susanne J. Kühl; Daniel Sinnecker; Peter Lipp; Karl-Ludwig Laugwitz; Michael Kühl; Alessandra Moretti
During cardiogenesis, most myocytes arise from cardiac progenitors expressing the transcription factors Isl1 and Nkx2‐5. Here, we show that a direct repression of Isl1 by Nkx2‐5 is necessary for proper development of the ventricular myocardial lineage. Overexpression of Nkx2‐5 in mouse embryonic stem cells (ESCs) delayed specification of cardiac progenitors and inhibited expression of Isl1 and its downstream targets in Isl1+ precursors. Embryos deficient for Nkx2‐5 in the Isl1+ lineage failed to downregulate Isl1 protein in cardiomyocytes of the heart tube. We demonstrated that Nkx2‐5 directly binds to an Isl1 enhancer and represses Isl1 transcriptional activity. Furthermore, we showed that overexpression of Isl1 does not prevent cardiac differentiation of ESCs and in Xenopus laevis embryos. Instead, it leads to enhanced specification of cardiac progenitors, earlier cardiac differentiation, and increased cardiomyocyte number. Functional and molecular characterization of Isl1‐overexpressing cardiomyocytes revealed higher beating frequencies in both ESC‐derived contracting areas and Xenopus Isl1‐gain‐of‐function hearts, which associated with upregulation of nodal‐specific genes and downregulation of transcripts of working myocardium. Immunocytochemistry of cardiomyocyte lineage‐specific markers demonstrated a reduction of ventricular cells and an increase of cells expressing the pacemaker channel Hcn4. Finally, optical action potential imaging of single cardiomyocytes combined with pharmacological approaches proved that Isl1 overexpression in ESCs resulted in normally electrophysiologically functional cells, highly enriched in the nodal subtype at the expense of the ventricular lineage. Our findings provide an Isl1/Nkx2‐5‐mediated mechanism that coordinately regulates the specification of cardiac progenitors toward the different myocardial lineages and ensures proper acquisition of myocyte subtype identity. Stem Cells 2015;33:1113–1129
Cerebral Cortex | 2015
Dino P. Leone; Whitney E. Heavner; Emily A. Ferenczi; Gergana Dobreva; John R. Huguenard; Rudolf Grosschedl; Susan K. McConnell
The chromatin-remodeling protein Satb2 plays a role in the generation of distinct subtypes of neocortical pyramidal neurons. Previous studies have shown that Satb2 is required for normal development of callosal projection neurons (CPNs), which fail to extend axons callosally in the absence of Satb2 and instead project subcortically. Here we conditionally delete Satb2 from the developing neocortex and find that neurons in the upper layers adopt some electrophysiological properties characteristic of deep layer neurons, but projections from the superficial layers do not contribute to the aberrant subcortical projections seen in Satb2 mutants. Instead, axons from deep layer CPNs descend subcortically in the absence of Satb2. These data demonstrate distinct developmental roles of Satb2 in regulating the fates of upper and deep layer neurons. Unexpectedly, Satb2 mutant brains also display changes in gene expression by subcerebral projection neurons (SCPNs), accompanied by a failure of corticospinal tract (CST) formation. Altering the timing of Satb2 ablation reveals that SCPNs require an early expression of Satb2 for differentiation and extension of the CST, suggesting that early transient expression of Satb2 in these cells plays an essential role in development. Collectively these data show that Satb2 is required by both CPNs and SCPNs for proper differentiation and axon pathfinding.
Frontiers in Genetics | 2014
Sirisha Cheedipudi; Oriana Genolet; Gergana Dobreva
During embryonic development a large number of widely differing and specialized cell types with identical genomes are generated from a single totipotent zygote. Tissue specific transcription factors cooperate with epigenetic modifiers to establish cellular identity in differentiated cells and epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns, a phenomenon referred to as epigenetic memory. This is accomplished via the stable maintenance of various epigenetic marks through successive rounds of cell division. Preservation of DNA methylation patterns is a well-established mechanism of epigenetic memory, but more recently it has become clear that many other epigenetic modifications can also be maintained following DNA replication and cell division. In this review, we present an overview of the current knowledge regarding the role of histone lysine methylation in the establishment and maintenance of stable epigenetic states.
Journal of Clinical Investigation | 2017
Xuejun Yuan; Hui Qi; Xiang Li; Fan Wu; Jian Fang; Eva Bober; Gergana Dobreva; Yonggang Zhou; Thomas Braun
Congenital heart disease (CHD) represents the most prevalent inborn anomaly. Only a minority of CHD cases are attributed to genetic causes, suggesting a major role of environmental factors. Nonphysiological hypoxia during early pregnancy induces CHD, but the underlying reasons are unknown. Here, we have demonstrated that cells in the mouse heart tube are hypoxic, while cardiac progenitor cells (CPCs) expressing islet 1 (ISL1) in the secondary heart field (SHF) are normoxic. In ISL1+ CPCs, induction of hypoxic responses caused CHD by repressing Isl1 and activating NK2 homeobox 5 (Nkx2.5), resulting in decreased cell proliferation and enhanced cardiomyocyte specification. We found that HIF1&agr; formed a complex with the Notch effector hes family bHLH transcription factor 1 (HES1) and the protein deacetylase sirtuin 1 (SIRT1) at the Isl1 gene. This complex repressed Isl1 in the hypoxic heart tube or following induction of ectopic hypoxic responses. Subsequently, reduced Isl1 expression abrogated ISL1-dependent recruitment of histone deacetylases HDAC1/5, inhibiting Nkx2.5 expression. Inactivation of Sirt1 in ISL1+ CPCs blocked Isl1 suppression via the HIF1&agr;/HES1/SIRT1 complex and prevented CHDs induced by pathological hypoxia. Our results indicate that spatial differences in oxygenation of the developing heart serve as signals to control CPC expansion and cardiac morphogenesis. We propose that physiological hypoxia coordinates homeostasis of CPCs, providing mechanistic explanations for some nongenetic causes of CHD.