Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gergely Berta is active.

Publication


Featured researches published by Gergely Berta.


International Immunology | 2009

Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis

Gergely Talabér; Ferenc Boldizsár; Domokos Bartis; László Pálinkás; Mariann Szabó; Gergely Berta; György Sétáló; Péter Németh; Timea Berki

Glucocorticoid receptor (GR) signaling plays an important role in the selection and apoptosis of thymocytes. Besides nuclear translocation, mitochondrial translocation of the ligand-bound GR in lymphoid cells was also shown, which might determine glucocorticoid (GC)-induced apoptosis sensitivity. In the present work, we followed the ligand-induced GR trafficking in CD4+CD8+ double-positive (DP) thymocytes. Using confocal microscopy, we found that upon short-term in vitro GC analog [dexamethasone (DX)] treatment, the GR translocates into the mitochondria but not into the nucleus in DP cells. We also analyzed the GR redistribution in cytosolic, nuclear and mitochondrial fractions of unseparated thymocytes by western blot and confirmed that in DX-treated cells a significant fraction of the GR translocates into the mitochondria. DX reduced the mitochondrial membrane potential of DP cells within 30 min, measured by flow cytometry, which refers to a direct modulatory activity of mitochondrial GR translocation. The abundant mitochondrial GR found in DP cells well correlates with their high GC-induced apoptosis sensitivity.


Cellular and Molecular Life Sciences | 2013

Progesterone-induced blocking factor differentially regulates trophoblast and tumor invasion by altering matrix metalloproteinase activity

Melinda Halasz; Beata Polgar; Gergely Berta; Lívia Czimbalek; Julia Szekeres-Bartho

Invasiveness is a common feature of trophoblast and tumors; however, while tumor invasion is uncontrolled, trophoblast invasion is strictly regulated. Both trophoblast and tumor cells express high levels of the immunomodulatory progesterone-induced blocking factor (PIBF), therefore, we aimed to test the possibility that PIBF might be involved in invasion. To this aim, we used PIBF-silenced or PIBF-treated trophoblast (HTR8/Svneo, and primary trophoblast) and tumor (HT-1080, A549, HCT116, PC3) cell lines. Silencing of PIBF increased invasiveness as well as MMP-2,-9 secretion of HTR8/SVneo, and decreased those of HT-1080 cells. PIBF induced immediate STAT6 activation in both cell lines. Silencing of IL-4Rα abrogated all the above effects of PIBF, suggesting that invasion-related signaling by PIBF is initiated through the IL-4Rα/PIBF-receptor complex. In HTR-8/SVneo, PIBF induced fast, but transient Akt and ERK phosphorylation, whereas in tumor cells, PIBF triggered sustained Akt, ERK, and late STAT3 activation. The late signaling events might be due to indirect action of PIBF. PIBF induced the expression of EGF and HB-EGF in HT-1080 cells. The STAT3-activating effect of PIBF was reduced in HB-EGF-deficient HT-1080 cells, suggesting that PIBF-induced HB-EGF contributes to late STAT3 activation. PIBF binds to the promoters of IL-6, EGF, and HB-EGF; however, the protein profile of the protein/DNA complex is different in the two cell lines. We conclude that in tumor cells, PIBF induces proteins, which activate invasion signaling, while—based on our previous data—PIBF might control trophoblast invasion by suppressing proinvasive genes.


Cell and Tissue Research | 2014

PAC1-expressing structures of neural retina alter their PAC1 isoform splicing during postnatal development

Viktoria Denes; N. Czotter; Monika Lakk; Gergely Berta; Robert Gábriel

Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family, exerts various effects on neuronal development as mediated by the differential expression of PAC1 receptor (PAC1-R) isoforms. The expression changes of PAC1-R isoforms (Hip, Hop1) reported in correlation with retinal development suggest an isoform switch during the second postnatal week. Our aim is to determine the exact period of the isoform shift and to describe the PAC1-R-immunoreactive structures appearing from postnatal day 5 (P5) to P10 in the rat retina. The ratio of Hip and Hop1 receptors was assessed and changes in their expression were followed by Taqman and SybrGreen-based quantitative polymerase chain reaction. For the detection of PAC1-R-expressing retinal structures, anti-PAC1-R, anti-calbindin, anti-protein kinase C, anti-glutamine synthetase, anti-HPC1 and anti-Brn3a antibodies were utilized. At the transcript level, a marked decrease to an undetectable level was measured in Hip mRNA expression from P6 to P9. Hop1 expression appeared to be unchanged from P6 to P9, followed by a significant elevation at P10. A Hip/Hop1 isoform shift occurred between P6 and P7. Immunostaining showed strong PAC1-R labeling from P5 to P10 in ganglion, amacrine, horizontal and rod bipolar neurons and in glial Muller cell processes. The Hop1 isoform was predominantly expressed in various types of retinal cell beginning at P7, because of a dramatic reduction in Hip mRNA level. As the Hop1 receptor is coupled to different signaling cascades, this isoform shift might alter the physiological role of PACAP during this particular period.


Apoptosis | 2017

The regulation of the mitochondrial apoptotic pathway by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells

Lilla Prenek; Ferenc Boldizsár; Réka Kugyelka; Emese Ugor; Gergely Berta; Péter Németh; Timea Berki

Glucocorticoids (GC) are important in the regulation of selection and apoptosis of CD4+CD8+ double-positive (DP) thymocytes. The pronounced GC-sensitivity of DP thymocytes, observed earlier, might be due to the combination of classical (genomic) and alternative (non-genomic) glucocorticoid receptor (GR) signaling events modifying activation or apoptotic pathways. In particular, the previously demonstrated mitochondrial translocation of activated GR in DP thymocytes offered a fascinating explanation for their pronounced GC-induced apoptosis sensitivity. However, the fine molecular details how the mitochondrial translocation of GR might regulate apoptosis remained unclear. Therefore, in the present study, we intended to examine which apoptotic pathways could be involved in GC-induced thymocyte apoptosis. Furthermore we investigated the potential relationship between the GR and Bcl-2 proteins. Using an in vitro test system, thymocytes from 4-week-old BALB/c mice, were treated with the GC-analogue dexamethasone (DX). Bax accumulated in mitochondria upon DX treatment. Mitochondrial GR showed association with members of the Bcl-2 family: Bak, Bim, Bcl-xL. Elevated Cytochrome C, and active caspase-3, -8, and -9 levels were detected in thymocytes after DX treatment. These results support the hypothesis that in early phases of GC-induced thymocyte apoptosis, the mitochondrial pathway plays a crucial role, confirmed by the release of Cytochrome C and the activation of caspase-9. The activation of caspase-8 was presumably due to cross-talk between apoptotic signaling pathways. We propose that the GC-induced mitochondrial accumulation of Bax and the interaction between the GR and Bim, Bcl-xL and Bak could play a role in the regulation of thymocyte apoptosis.


Frontiers in Neural Circuits | 2013

Diverse in- and output polarities and high complexity of local synaptic and non-synaptic signaling within a chemically defined class of peptidergic Drosophila neurons

Gergely Karsai; Edit Pollák; Matthias Wacker; Matthias Vömel; Mareike Selcho; Gergely Berta; Ronald J. Nachman; R. Elwyn Isaac; László Molnár; Christian Wegener

Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or volume transmission. Moreover, the polarity of peptidergic interneurons in terms of in- and out-put sites can be hard to predict and is very little explored. We describe in detail the morphology and the subcellular distribution of fluorescent vesicle/dendrite markers in CCAP neurons (NCCAP), a well defined set of peptidergic neurons in the Drosophila larva. NCCAP can be divided into five morphologically distinct subsets. In contrast to other subsets, serial homologous interneurons in the ventral ganglion show a mixed localization of in- and output markers along ventral neurites that defy a classification as dendritic or axonal compartments. Ultrastructurally, these neurites contain both pre- and postsynaptic sites preferably at varicosities. A significant portion of the synaptic events are due to reciprocal synapses. Peptides are mostly non-synaptically or parasynaptically released, and dense-core vesicles and synaptic vesicle pools are typically well separated. The responsiveness of the NCCAP to ecdysis-triggering hormone may be at least partly dependent on a tonic synaptic inhibition, and is independent of ecdysteroids. Our results reveal a remarkable variety and complexity of local synaptic circuitry within a chemically defined set of peptidergic neurons. Synaptic transmitter signaling as well as peptidergic paracrine signaling and volume transmission from varicosities can be main signaling modes of peptidergic interneurons depending on the subcellular region. The possibility of region-specific variable signaling modes should be taken into account in connectomic studies that aim to dissect the circuitry underlying insect behavior and physiology, in which peptidergic neurons act as important regulators.


Journal of Reproductive Immunology | 2017

PIBF positive uterine NK cells in the mouse decidua

Agnes Bogdan; Gergely Berta; Julia Szekeres-Bartho

Though uterine NK cells (u NK cells) contain cytotoxic granules, and selectively over- express the genes of perforin and granzymes, during normal pregnancy, they are not cytotoxic. Progesterone is indispensable for the establishment and maintenance of pregnancy both in humans and in mice. Mouse uterine NK cells do not express the classical progesterone receptor, yet progesterone affects the recruitment and function of uterine NK cells, the latter partly via the Progesterone-Induced Blocking Factor (PIBF). We demonstrated PIBF positive granulated cells in the mouse decidua. The aim of this study was to characterize these cells by lectin immunohistochemistry and anti-perforin reactivity. PIBF+ granulated cells were absent from the deciduae of alymphoid mice, but appeared in the decidua of those that had been reconstituted with bone marrow from male BALB/c mice. PIBF+ granulated cells bound the DBA lectin, suggesting their NK cell nature, and also contained perforin, which co-localized with PIBF in the cytoplasmic granules. In anti-progesterone treated mice all of the PIBF+ cells were perforin positive at g. d. 12.5, in contrast to the 54% perforin positivity of PIBF+ cells in untreated mice. CONCLUSION The PIBF+ granulated cells in the decidua belong to the NK population, and PIPB co-localizes with perforin in the cytoplasmic granules.


Journal of Immunology | 2014

Absence of Nkx2-3 Homeodomain Transcription Factor Reprograms the Endothelial Addressin Preference for Lymphocyte Homing in Peyer’s Patches

Zoltán Kellermayer; Martina Mihalj; Árpád Lábadi; Tamás Czömpöly; Mike Lee; Edward O'Hara; Eugene C. Butcher; Gergely Berta; András Balogh; Hans-Henning Arnold; Péter Balogh

Although the homing of lymphocytes to GALT has been extensively studied, little is known about how high endothelial venules (HEVs) within Peyer’s patches (PPs) are patterned to display dominantly mucosal addressin cell adhesion molecule 1 (MAdCAM-1). In this study, we report that Nkx2-3–deficient mice show gradual loss of MAdCAM-1 in PPs postnatally and increased levels of mRNA for peripheral lymph node addressin (PNAd) backbone proteins as well as enhanced expression of MECA79 sulfated glycoepitope at the luminal aspect of HEVs, thus replacing MAdCAM-1 with PNAd. Induction of PNAd in mutant PPs requires lymphotoxin β receptor activity, and its upregulation needs the presence of mature T and B cells. Furthermore, treatment with MECA-79 anti-PNAd mAb in vivo effectively blocks lymphocyte homing to mutant PPs. Despite the replacement of MAdCAM-1 by PNAd in HEV endothelia, lymphocytes could efficiently home to PPs in mutant mice. We conclude that although Nkx2-3 activity controls the addressin balance of HEVs in GALT, the general HEV functionality is preserved independently from Nkx2-3, indicating a substantial plasticity in the specification of GALT HEV endothelium.


Immunobiology | 2017

Glucocorticoid hormone treatment enhances the cytokine production of regulatory T cells by upregulation of Foxp3 expression

Emese Ugor; Lilla Prenek; Ramóna Pap; Gergely Berta; Dávid Ernszt; József Najbauer; Péter Németh; Ferenc Boldizsár; Timea Berki

OBJECTIVE Despite the fact that glucocorticoids (GC) are important therapeutic tools, their effects on regulatory T cells (Treg) are not well defined. The aim of our work was to investigate how GCs influence in vivo the thymic (tTreg) and peripheral Treg (pTreg) differentiation, survival and cytokine production. METHODS Tregs were detected with flow cytometry in lymphatic organs of 4-6 weeks old BALB/c mice after repeated (2-4days), high-dose in vivo GC treatment using CD4/CD25 cell surface and Foxp3/IL-10/TGFβ/glucocorticoid receptor (GR) intracellular staining. Cytokine, Foxp3, and GR mRNA levels of sorted CD4+CD25high T cells were analyzed using RT-PCR. Foxp3 and GR localization in Treg cells was investigated with confocal microscopy. RESULTS GC treatment of mice resulted in increased relative tTreg frequency in the thymus, which was due to decreased total thymocyte numbers with unchanged absolute tTreg cell count. In contrast the relative pTreg cell ratio in secondary lymphatic organs decreased or showed no changes after GC treatment, while the absolute number of pTregs decreased. Elevated intracellular IL-10+ and TGFβ+ tTreg and pTreg ratios were measured in GC-treated animals, accompanied with elevated Foxp3 mRNA expression. In addition, GC treatment caused increased TGFβ and IL-35 mRNA expression in CD4+CD25high+ splenic and elevated IL-10 mRNA level in thymic tTregs. GR expression of thymic tTreg cells was lower than in pTregs. GC treatment caused an opposite change in GR levels, elevating GR in tTregs but decreasing it in pTregs. We observed a nuclear localization of GR in both tTregs and pTregs, which showed high colocalization (∼60%) with Foxp3 transcription factor. These data suggest an interaction of these two transcription factors with further increase due to GC treatment in splenic pTregs. CONCLUSION Our data show selective survival of tTregs and elevated production of immunosuppressive cytokines by Treg cells after GC treatment, which may contribute to the immunosuppressive effects of GCs.


Journal of Reproductive Immunology | 2018

The effect of the Progesterone-Induced Blocking Factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines

T. Balassa; Gergely Berta; Laszlo Jakab; Noémi Bohonyi; Julia Szekeres-Bartho

In addition to being immunomodulatory, Progesterone-Induced Blocking Factor (PIBF) plays a role in cell cycle regulation and invasion. The full length protein is associated with the pericentriolar satellites and as such, it is crucial for maintaining the integrity of spindle poles during mitosis. Another suggestive evidence for the involvement of PIBF in tumour progression is the fact that the PIBF gene has been identified on chromosome 13 in the region associated with breast cancer susceptibility. Earlier we showed that PIBF differentially regulates the invasiveness of trophoblast and tumour cell lines. The aim of the present study was to further investigate the role of PIBF in tumour development, using primary ovarian- (OC) and primary lung carcinoma (LC) cell cultures, and JEG-3 choriocarcinoma cell line. In the cultured cells PIBF was knocked down by siRNA treatment, and the impact of PIBF deficiency on MMP-9 activity and E-cadherin expression as well as on invasive and migratory capacity of the cells was tested. In conditioned media of PIBF-deficient JEG-3 cells, LC cells and OC cells MMP-9 activity was reduced to 36% 35%, and 65% respectively compared to controls. Though PIBF knock down did not affect migration, in JEG-3 cells, LC primary cells and OC primary cells PIBF deficiency resulted 20%, 50% and 50% decrease of invasion respectively. PIBF silencing resulted in increased E-cadherin expression, suggesting that by down regulating E-cadherin expression, PIBF might interfere with the cell-cell adhesion mechanisms and by increasing MMP activity induced extracellular matrix degradation, facilitates the invasion of tumour cells.


Cellular & Molecular Biology Letters | 2012

Sodium nitroprusside, a nitric oxide donor, fails to bypass the block of neuronal differentiation in PC12 cells imposed by a dominant negative Ras protein

Judit Bátor; Judit Varga; Gergely Berta; T. Barbakadze; David Mikeladze; Jeremy Ramsden; József Szeberényi

Nitric oxide (NO) is a mediator of a diverse array of inter- and intracellular signal transduction processes. The aim of the present study was to analyze its possible role as a second messenger in the process of neuronal differentiation of PC12 pheochromocytoma cells. Upon NGF treatment wildtype PC12 cells stop dividing and develop neurites. In contrast, a PC12 subclone (designated M-M17-26) expressing a dominant-negative mutant Ras protein keeps proliferating and fails to grow neurites after NGF treatment. Sodium nitroprusside (SNP), an NO donor, was found to induce the p53 protein and to inhibit proliferation of both PC12 and M-M17-26 cells, but failed to induce neuronal differentiation in these cell lines. Key signaling pathways (the ERK and Akt pathways) were also not affected by SNP treatment, and the phosphorylation of CREB transcription factor was only slightly stimulated. It is thus concluded from the results presented in this paper that NO is unable to activate signaling proteins acting downstream or independent of Ras that are required for neuronal differentiation.

Collaboration


Dive into the Gergely Berta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Péter Németh

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge