Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gergely Gidofalvi is active.

Publication


Featured researches published by Gergely Gidofalvi.


Journal of Chemical Physics | 2008

Active-space two-electron reduced-density-matrix method: Complete active-space calculations without diagonalization of the N-electron Hamiltonian

Gergely Gidofalvi; David A. Mazziotti

Molecular systems in chemistry often have wave functions with substantial contributions from two-or-more electronic configurations. Because traditional complete-active-space self-consistent-field (CASSCF) methods scale exponentially with the number N of active electrons, their applicability is limited to small active spaces. In this paper we develop an active-space variational two-electron reduced-density-matrix (2-RDM) method in which the expensive diagonalization is replaced by a variational 2-RDM calculation where the 2-RDM is constrained by approximate N-representability conditions. Optimization of the constrained 2-RDM is accomplished by large-scale semidefinite programming [Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. Because the computational cost of the active-space 2-RDM method scales polynomially as r(a)(6) where r(a) is the number of active orbitals, the method can be applied to treat active spaces that are too large for conventional CASSCF. The active-space 2-RDM method performs two steps: (i) variational calculation of the 2-RDM in the active space and (ii) optimization of the active orbitals by Jacobi rotations. For large basis sets this two-step 2-RDM method is more efficient than the one-step, low-rank variational 2-RDM method [Gidofalvi and Mazziotti, J. Chem. Phys. 127, 244105 (2007)]. Applications are made to HF, H(2)O, and N(2) as well as n-acene chains for n=2-8. When n>4, the acenes cannot be treated by conventional CASSCF methods; for example, when n=8, CASSCF requires optimization over approximately 1.47x10(17) configuration state functions. The natural occupation numbers of the n-acenes show the emergence of bi- and polyradical character with increasing chain length.


Journal of Physical Chemistry A | 2011

Strong Correlation in Acene Sheets from the Active-Space Variational Two-Electron Reduced Density Matrix Method: Effects of Symmetry and Size

Kenley Pelzer; Loren Greenman; Gergely Gidofalvi; David A. Mazziotti

Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).


Journal of Chemical Theory and Computation | 2016

Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods

Jacob Fosso-Tande; Truong-Son Nguyen; Gergely Gidofalvi; A. Eugene DePrince

A large-scale implementation of the complete active space self-consistent field (CASSCF) method is presented. The active space is described using the variational two-electron reduced-density-matrix (v2RDM) approach, and the algorithm is applicable to much larger active spaces than can be treated using configuration-interaction-driven methods. Density fitting or Cholesky decomposition approximations to the electron repulsion integral tensor allow for the simultaneous optimization of large numbers of external orbitals. We have tested the implementation by evaluating singlet-triplet energy gaps in the linear polyacene series and two dinitrene biradical compounds. For the acene series, we report computations that involve active spaces consisting of as many as 50 electrons in 50 orbitals and the simultaneous optimization of 1892 orbitals. For the dinitrene compounds, we find that the singlet-triplet gaps obtained from v2RDM-driven CASSCF with partial three-electron N-representability conditions agree with those obtained from configuration-interaction-driven approaches to within one-third of 1 kcal mol(-1). When enforcing only the two-electron N-representability conditions, v2RDM-driven CASSCF yields less accurate singlet-triplet energy gaps in these systems, but the quality of the results is still far superior to those obtained from standard single-reference approaches.


Journal of Chemical Physics | 2007

Molecular properties from variational reduced-density-matrix theory with three-particle N-representability conditions

Gergely Gidofalvi; David A. Mazziotti

Molecular ground-state energies and two-electron reduced density matrices (2-RDMs) have recently been computed without the many-electron wave function by constraining the 2-RDM to satisfy a complete set of three-positivity conditions for N representability [D. A. Mazziotti, Phys. Rev. A 74, 032501 (2006)]. Energies at both equilibrium and nonequilibrium geometries are obtained within 0.3% of the correlation energy. In this paper the authors extend this work to examine the accuracy of molecular properties, including multipole moments and components of the ground-state energy, relative to full configuration interaction (FCI). Comparisons are also made with 2-RDM methods with two-positivity conditions and two-positivity plus the generalized T1T2 conditions as well as several approximate wave function methods. Using the 2-RDM method with three-positivity conditions, the authors obtain dipole, quadrupole, and octupole moments for BeH2, BH, H2O, CO, and NH3 at equilibrium geometries that are within 0.04% of their FCI values. In addition, for the potential energy surface of N2, the 2-RDM method with three-positivity yields not only accurate total ground-state energies but also accurate expectation values of the kinetic energy operator, the electron-nuclei potential, and electron-electron repulsion.


Journal of Chemical Physics | 2014

The multifacet graphically contracted function method. I. Formulation and implementation

Ron Shepard; Gergely Gidofalvi; Scott R. Brozell

The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.


Journal of Chemical Physics | 2007

Multireference self-consistent-field energies without the many-electron wave function through a variational low-rank two-electron reduced-density-matrix method.

Gergely Gidofalvi; David A. Mazziotti

The variational two-electron reduced-density-matrix (2-RDM) method allows for the computation of accurate ground-state energies and 2-RDMs of atoms and molecules without the explicit construction of an N-electron wave function. While previous work on variational 2-RDM theory has focused on calculating full configuration-interaction energies, this work presents the first application toward approximating multiconfiguration self-consistent-field (MCSCF) energies via low-rank restrictions on the 1- and 2-RDMs. The 2-RDM method with two- or three-particle N-representability conditions reduces the exponential active-space scaling of MCSCF methods to a polynomial scaling. Because the first-order algorithm [Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)] represents each form of the 1- and 2-RDMs by a matrix factorization, the RDMs are readily defined to have a low rank rather than a full rank by setting the matrix factors to be rectangular rather than square. Results for the potential energy surfaces of hydrogen fluoride, water, and the nitrogen molecule show that the low-rank 2-RDM method yields accurate approximations to the MCSCF energies. We also compute the energies along the symmetric stretch of a 20-atom hydrogen chain where traditional MCSCF calculations, requiring more than 17x10(9) determinants in the active space, could not be performed.


Journal of Chemical Physics | 2005

Application of variational reduced-density-matrix theory to organic molecules

Gergely Gidofalvi; David A. Mazziotti

Variational calculation of the two-electron reduced-density matrix (2-RDM), using a new first-order algorithm [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)], is applied to medium-sized organic molecules. The calculations reveal systematic trends in the accuracy of the energy with well-known chemical concepts such as hybridization, electronegativity, and atomic size. Furthermore, correlation energies from hydrocarbon chains indicate that the calculation of the 2-RDM subject to two-positivity conditions is size extensive, that is, the energy grows linearly with the number of electrons. Because organic molecules have a well-defined set of functional groups, we employ the trends in energy accuracy of the functional groups to design a correction to the 2-RDM energy for an arbitrary organic molecule. We apply the 2-RDM calculations with the functional-group correction to a large set of organic molecules with different functional groups. Energies with millihartree accuracy are obtained both at equilibrium and nonequilibrium geometries.


Journal of Chemical Physics | 2006

Computation of dipole, quadrupole, and octupole surfaces from the variational two-electron reduced density matrix method

Gergely Gidofalvi; David A. Mazziotti

Recent advances in the direct determination of the two-electron reduced density matrix (2-RDM) by imposing known N-representability conditions have mostly focused on the accuracy of molecular potential energy surfaces where multireference effects are significant. While the norm of the 2-RDMs deviation from full configuration interaction has been computed, few properties have been carefully investigated as a function of molecular geometry. Here the dipole, quadrupole, and octupole moments are computed for a range of molecular geometries. The addition of Erdahls T2 condition [Int. J. Quantum Chem. 13, 697 (1978)] to the D, Q, and G conditions produces dipole and multipole moments that agree with full configuration interaction in a double-zeta basis set at all internuclear distances.


Journal of Computational Chemistry | 2009

Computation of determinant expansion coefficients within the graphically contracted function method

Gergely Gidofalvi; Ron Shepard

Most electronic structure methods express the wavefunction as an expansion of N‐electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems.


Journal of Chemical Physics | 2014

The multifacet graphically contracted function method. II. A general procedure for the parameterization of orthogonal matrices and its application to arc factors.

Ron Shepard; Gergely Gidofalvi; Scott R. Brozell

Practical algorithms are presented for the parameterization of orthogonal matrices Q ∈ R(m×n) in terms of the minimal number of essential parameters {φ}. Both square n = m and rectangular n < m situations are examined. Two separate kinds of parameterizations are considered, one in which the individual columns of Q are distinct, and the other in which only Span(Q) is significant. The latter is relevant to chemical applications such as the representation of the arc factors in the multifacet graphically contracted function method and the representation of orbital coefficients in SCF and DFT methods. The parameterizations are represented formally using products of elementary Householder reflector matrices. Standard mathematical libraries, such as LAPACK, may be used to perform the basic low-level factorization, reduction, and other algebraic operations. Some care must be taken with the choice of phase factors in order to ensure stability and continuity. The transformation of gradient arrays between the Q and {φ} parameterizations is also considered. Operation counts for all factorizations and transformations are determined. Numerical results are presented which demonstrate the robustness, stability, and accuracy of these algorithms.

Collaboration


Dive into the Gergely Gidofalvi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Shepard

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott R. Brozell

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung F. Wong

University of Missouri–St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge