Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gergely Maróti is active.

Publication


Featured researches published by Gergely Maróti.


Science | 2010

Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis

Willem Van de Velde; Grigor Zehirov; Ágnes Szatmári; Mónika Debreczeny; Hironobu Ishihara; Zoltán Kevei; Attila Farkas; Kata R. Mikuláss; Andrea M. Nagy; Hilda Tiricz; Béatrice Satiat-Jeunemaitre; Benoît Alunni; Mickael Bourge; Mikiko Abe; Attila Kereszt; Gergely Maróti; Toshiki Uchiumi; Eva Kondorosi; Peter Mergaert

Legume Symbiosome Leguminous plants (peas and beans) are major players in global nitrogen cycling by virtue of their symbioses with nitrogen-fixing bacteria that are harbored in specialized structures, called nodules, on the plants roots. Van de Velde et al. (p. 1122) show that the host plant, Medicago truncatula produces nodule-specific cysteine-rich peptides, resembling natural plant defense peptides. The peptides enter the bacterial cells and promote its development into the mature symbiont. In a complementary study, D. Wang et al. (p. 1126), have identified the signal peptidase, also encoded by the plant, that is required for processing these specialized peptides into their active form. Products encoded by the leguminous plant Medicago direct the differentiation of the bacterial partner in symbiosis. Legume plants host nitrogen-fixing endosymbiotic Rhizobium bacteria in root nodules. In Medicago truncatula, the bacteria undergo an irreversible (terminal) differentiation mediated by hitherto unidentified plant factors. We demonstrated that these factors are nodule-specific cysteine-rich (NCR) peptides that are targeted to the bacteria and enter the bacterial membrane and cytosol. Obstruction of NCR transport in the dnf1-1 signal peptidase mutant correlated with the absence of terminal bacterial differentiation. On the contrary, ectopic expression of NCRs in legumes devoid of NCRs or challenge of cultured rhizobia with peptides provoked symptoms of terminal differentiation. Because NCRs resemble antimicrobial peptides, our findings reveal a previously unknown innovation of the host plant, which adopts effectors of the innate immune system for symbiosis to manipulate the cell fate of endosymbiotic bacteria.


Biotechnology for Biofuels | 2012

Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing

Roland Wirth; Etelka Kovács; Gergely Maróti; Zoltán Bagi; Gábor Rákhely; Kornél L. Kovács

BackgroundRenewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communities and metabolic pathways involved the biotechnology of the microbiological process leading to biogas production is poorly understood. Metagenomic approaches are suitable means of addressing related questions. In the present work a novel high-throughput technique was tested for its benefits in resolving the functional and taxonomical complexity of such microbial consortia.ResultsIt was demonstrated that the extremely parallel SOLiD™ short-read DNA sequencing platform is capable of providing sufficient useful information to decipher the systematic and functional contexts within a biogas-producing community. Although this technology has not been employed to address such problems previously, the data obtained compare well with those from similar high-throughput approaches such as 454-pyrosequencing GS FLX or Titanium. The predominant microbes contributing to the decomposition of organic matter include members of the Eubacteria, class Clostridia, order Clostridiales, family Clostridiaceae. Bacteria belonging in other systematic groups contribute to the diversity of the microbial consortium. Archaea comprise a remarkably small minority in this community, given their crucial role in biogas production. Among the Archaea, the predominant order is the Methanomicrobiales and the most abundant species is Methanoculleus marisnigri. The Methanomicrobiales are hydrogenotrophic methanogens. Besides corroborating earlier findings on the significance of the contribution of the Clostridia to organic substrate decomposition, the results demonstrate the importance of the metabolism of hydrogen within the biogas producing microbial community.ConclusionsBoth microbiological diversity and the regulatory role of the hydrogen metabolism appear to be the driving forces optimizing biogas-producing microbial communities. The findings may allow a rational design of these communities to promote greater efficacy in large-scale practical systems. The composition of an optimal biogas-producing consortium can be determined through the use of this approach, and this systematic methodology allows the design of the optimal microbial community structure for any biogas plant. In this way, metagenomic studies can contribute to significant progress in the efficacy and economic improvement of biogas production.


Research in Microbiology | 2011

Natural roles of antimicrobial peptides in microbes, plants and animals.

Gergely Maróti; Attila Kereszt; Eva Kondorosi; Peter Mergaert

Antimicrobial peptides (AMPs) are ribosomally synthesized natural antibiotics that are crucial effectors of innate immune systems in all living organisms. AMPs are diverse peptides, differing in their amino acid composition and structure, that generally display rapid killing and broad-spectrum antimicrobial activities. Therefore, AMPs have high potential for therapeutic use in healthcare and agriculture. This review focuses on in vivo studies relating how organisms - bacteria, plants, insects and mammals - employ AMPs in their interactions with microbial competitors, pathogens and symbionts.


Applied and Environmental Microbiology | 2004

Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

Gábor Rákhely; Ákos T. Kovács; Gergely Maróti; Barna Fodor; Gyula Csanádi; Dóra Latinovics; Kornél L. Kovács

ABSTRACT Structural genes coding for two membrane-associated NiFe hydrogenases in the phototrophic purple sulfur bacterium Thiocapsa roseopersicina (hupSL and hynSL) have recently been isolated and characterized. Deletion of both hydrogenase structural genes did not eliminate hydrogenase activity in the cells, and considerable hydrogenase activity was detected in the soluble fraction. The enzyme responsible for this activity was partially purified, and the gene cluster coding for a cytoplasmic, NAD+-reducing NiFe hydrogenase was identified and sequenced. The deduced gene products exhibited the highest similarity to the corresponding subunits of the cyanobacterial bidirectional soluble hydrogenases (HoxEFUYH). The five genes were localized on a single transcript according to reverse transcription-PCR experiments. A σ54-type promoter preceded the gene cluster, suggesting that there was inducible expression of the operon. The Hox hydrogenase was proven to function as a truly bidirectional hydrogenase; it produced H2 under nitrogenase-repressed conditions, and it recycled the hydrogen produced by the nitrogenase in cells fixing N2. In-frame deletion of the hoxE gene eliminated hydrogen evolution derived from the Hox enzyme in vivo, although it had no effect on the hydrogenase activity in vitro. This suggests that HoxE has a hydrogenase-related role; it likely participates in the electron transfer processes. This is the first example of the presence of a cyanobacterial-type, NAD+-reducing hydrogenase in a phototrophic bacterium that is not a cyanobacterium. The potential physiological implications are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms

Attila Farkas; Gergely Maróti; Zoltan Györgypal; Rui M. Lima; Katalin F. Medzihradszky; Attila Kereszt; Peter Mergaert; Eva Kondorosi

Significance Intracellular endosymbiotic bacteria in diverse symbiotic systems are under the control of host-derived symbiosis-specific peptides. These peptides have mostly unknown activities. In the facultative rhizobium-legume symbiosis, the bacteria differentiate in many legumes to large polyploid noncultivable bacteroids. This terminal differentiation is achieved by concerted actions of hundreds of nodule-specific cysteine-rich (NCR) peptides. Although in vitro antimicrobial activities were demonstrated for a few NCR peptides, their mode of action in planta remained unexplored. Our work reveals a complex interaction network of NCR247, which affects bacterial cell division machinery, translation, and protein folding. These findings give an insight how the host can modulate the physiology of the endosymbionts and may serve as a paradigm for other symbiotic systems. Symbiosis between rhizobia soil bacteria and legume plants results in the formation of root nodules where plant cells are fully packed with nitrogen fixing bacteria. In the host cells, the bacteria adapt to the intracellular environment and gain the ability for nitrogen fixation. Depending on the host plants, the symbiotic fate of bacteria can be either reversible or irreversible. In Medicago and related legume species, the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. Approximately 600 of them are nodule-specific cysteine-rich (NCR) peptides produced in the rhizobium-infected plant cells. NCRs are targeted to the endosymbionts, and concerted action of different sets of peptides governs different stages of endosymbiont maturation, whereas the symbiotic function of individual NCRs is unknown. This study focused on NCR247, a cationic peptide exhibiting in vitro antimicrobial activities. We show that NCR247 acts in those nodule cells where bacterial cell division is arrested and cell elongation begins. NCR247 penetrates the bacteria and forms complexes with many bacterial proteins. Interaction with FtsZ required for septum formation is one of the host interventions for inhibiting bacterial cell division. Complex formation with the ribosomal proteins affects translation and contributes to altered proteome and physiology of the endosymbiont. Binding to the chaperone GroEL amplifies the NCR247-modulated biological processes. We show that GroEL1 of Sinorhizobium meliloti is required for efficient infection, terminal differentiation, and nitrogen fixation.


Applied and Environmental Microbiology | 2013

Antimicrobial Nodule-Specific Cysteine-Rich Peptides Induce Membrane Depolarization-Associated Changes in the Transcriptome of Sinorhizobium meliloti

Hilda Tiricz; Attila Szűcs; Attila Farkas; Bernadett Pap; Rui M. Lima; Gergely Maróti; Eva Kondorosi; Attila Kereszt

ABSTRACT Leguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural target Sinorhizobium meliloti was characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment of S. meliloti cultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


PLOS ONE | 2013

Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

Etelka Kovács; Roland Wirth; Gergely Maróti; Zoltán Bagi; Gábor Rákhely; Kornél L. Kovács

It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in the community composition in the course of the process.


Applied and Environmental Microbiology | 2004

Modular Broad-Host-Range Expression Vectors for Single-Protein and Protein Complex Purification

Barna Fodor; Ákos T. Kovács; Róbert Csáki; Éva Hunyadi-Gulyás; Éva Klement; Gergely Maróti; Lívia S. Mészáros; Katalin F. Medzihradszky; Gábor Rákhely; Kornél L. Kovács

ABSTRACT A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species.


Bioresource Technology | 2015

Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation

Bernadett Pap; Ádám Györkei; Iulian Zoltan Boboescu; Ildikó K. Nagy; Tibor Bíró; Eva Kondorosi; Gergely Maróti

Stability of biogas production is highly dependent on the microbial community composition of the bioreactors. This composition is basically determined by the nature of biomass substrate and the physical-chemical parameters of the anaerobic digestion. Operational temperature is a major factor in the determination of the anaerobic degradation process. Next-generation sequencing (NGS)-based metagenomic approach was used to monitor the organization and operation of the microbial community throughout an experiment where mesophilic reactors (37°C) were gradually switched to thermophilic (55°C) operation. Temperature adaptation resulted in a clearly thermophilic community having a generally decreased complexity compared to the mesophilic system. A temporary destabilization of the system was observed, indicating a lag phase in the community development in response to temperature stress. Increased role of hydrogenotrophic methanogens under thermophilic conditions was shown, as well as considerably elevated levels of Fe-hydrogenases and hydrogen producer bacteria were observed in the thermophilic system.


Frontiers in Microbiology | 2014

Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?

Gergely Maróti; Eva Kondorosi

The symbiosis between rhizobia soil bacteria and legumes is facultative and initiated by nitrogen starvation of the host plant. Exchange of signal molecules between the partners leads to the formation of root nodules where bacteria are converted to nitrogen-fixing bacteroids. In this mutualistic symbiosis, the bacteria provide nitrogen sources for plant growth in return for photosynthates from the host. Depending on the host plant the symbiotic fate of bacteria can either be reversible or irreversible. In Medicago plants the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. About 500 of them are cysteine-rich NCR peptides produced in the infected plant cells. NCRs are targeted to the endosymbionts and the concerted action of different sets of peptides governs different stages of endosymbiont maturation. This review focuses on symbiotic plant cell development and terminal bacteroid differentiation and demonstrates the crucial roles of symbiotic peptides by showing an example of multi-target mechanism exerted by one of these symbiotic peptides.

Collaboration


Dive into the Gergely Maróti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Kondorosi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balázs Bálint

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bernadett Pap

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gergely Lakatos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge