Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gergő Szűcs is active.

Publication


Featured researches published by Gergő Szűcs.


Cardiovascular Diabetology | 2013

Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats

Márta Sárközy; Ágnes Zvara; Nóra Gyémánt; Veronika Fekete; Gabriella F. Kocsis; Judit Pipis; Gergő Szűcs; Csaba Csonka; László G. Puskás; Péter Ferdinandy; Tamás Csont

BackgroundMetabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome.MethodsFasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR.ResultsFasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin 18. Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by metabolic syndrome.ConclusionsMetabolic syndrome significantly alters cardiac gene expression profile which may be involved in development of cardiac pathologies in the presence of metabolic syndrome.


Experimental Diabetes Research | 2016

Experimental Diabetes Mellitus in Different Animal Models

Amin Al-awar; Krisztina Kupai; Médea Veszelka; Gergő Szűcs; Zouhair Attieh; Zsolt Murlasits; Szilvia Török; Anikó Pósa; Csaba Varga

Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans.


Pharmacological Research | 2016

Novel, selective EPO receptor ligands lacking erythropoietic activity reduce infarct size in acute myocardial infarction in rats.

Krisztina Kiss; Csaba Csonka; János Pálóczi; Judit Pipis; Anikó Görbe; Gabriella F. Kocsis; Zsolt Murlasits; Márta Sárközy; Gergő Szűcs; Christopher P. Holmes; Yijun Pan; Ashok Bhandari; Tamás Csont; Mehrdad Shamloo; Kathryn W Woodburn; Péter Ferdinandy; Péter Bencsik

Erythropoietin (EPO) has been shown to protect the heart against acute myocardial infarction in pre-clinical studies, however, EPO failed to reduce infarct size in clinical trials and showed significant safety problems. Here, we investigated cardioprotective effects of two selective non-erythropoietic EPO receptor ligand dimeric peptides (AF41676 and AF43136) lacking erythropoietic activity, EPO, and the prolonged half-life EPO analogue, darbepoetin in acute myocardial infarction (AMI) in rats. In a pilot study, EPO at 100U/mL significantly decreased cell death compared to vehicle (33.8±2.3% vs. 40.3±1.5%, p<0.05) in rat neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. In further studies (studies 1-4), in vivo AMI was induced by 30min coronary occlusion and 120min reperfusion in male Wistar rats. Test compounds and positive controls for model validation (B-type natriuretic peptide, BNP or cyclosporine A, CsA) were administered iv. before the onset of reperfusion. Infarct size (IS) was measured by standard TTC staining. In study 1, 5000U/kg EPO reduced infarct size significantly compared to vehicle (45.3±4.8% vs. 59.8±4.5%, p<0.05). In study 2, darbepoetin showed a U-shaped dose-response curve with maximal infarct size-reducing effect at 5μg/kg compared to the vehicle (44.4±5.7% vs. 65.9±2.7%, p<0.01). In study 3, AF41676 showed a U-shaped dose-response curve, where 3mg/kg was the most effective dose compared to the vehicle (24.1±3.9% vs. 44.3±2.5%, p<0.001). The positive control BNP significantly decreased infarct size in studies 1-3 by approximately 35%. In study 4, AF43136 at 10mg/kg decreased infarct size, similarly to the positive control CsA compared to the appropriate vehicle (39.4±5.9% vs. 58.1±5.4% and 45.9±2.4% vs. 63.8±4.1%, p<0.05, respectively). This is the first demonstration that selective, non-erythropoietic EPO receptor ligand dimeric peptides AF41676 and AF43136 administered before reperfusion are able to reduce infarct size in a rat model of AMI. Therefore, non-erythropoietic EPO receptor peptide ligands may be promising cardioprotective agents.


Archive | 2017

MMP activity detection in zymograms

Péter Bencsik; Monika Bartekova; Anikó Görbe; Krisztina Kiss; János Pálóczi; Jana Radosinska; Gergő Szűcs; Péter Ferdinandy

Matrix metalloproteinases (MMP) belong to a distinguished class of zinc-dependent endopeptidases. Zymography is a semi-quantitative tool for determining the activity of different MMP isoenzymes in a variety of biological samples. In substrate gel zymography, protein samples of different origin (tissue, cell lysates, plasma/serum, perfusates, other liquids) are separated in sodium dodecyl sulfate (SDS) polyacrylamide gels containing copolymerized substrate (gelatin, casein, elastin, etc.), and after incubation-enabling substrate cleavage by MMPs, MMP activities are detected after the gel staining as transparent bands against a dark-blue background. In situ zymography is a histological modification of substrate zymography in frozen sections, allowing detection of the localization of the MMP activities within the tissue. Here, we describe detailed experimental protocols of all abovementioned techniques and provide examples for several sample measurements.


International Journal of Molecular Sciences | 2018

Novel Potentials of the DPP-4 Inhibitor Sitagliptin against Ischemia-Reperfusion (I/R) Injury in Rat Ex-Vivo Heart Model

Amin Al-awar; Nikoletta Almási; Renáta Szabó; István Takács; Zsolt Murlasits; Gergő Szűcs; Szilvia Török; Anikó Pósa; Csaba Varga; Krisztina Kupai

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects. The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury. Male wistar rats received 2 weeks’ Sitg oral treatment of different doses (25, 50, 100, and 150 mg/kg/day), or saline as a Control. Hearts were then isolated and subjected to two different I/R injury protocols: 10 min perfusion, 45 min regional ischemia, and 120 min reperfusion for infarct size (IS) measurement, or: 10 min perfusion, 45 min regional ischemia and 10 min reperfusion for biochemical analysis: nitric oxide synthases (NOSs) and DPP-4 activity, glucagon-like peptide-1 (GLP-1), Calcium, transient receptor potential vanilloid (TRPV)-1 and calcitonin gene-related peptide (CGRP) levels, transient receptor potential canonical (TRPC)-1 and e-NOS protein expression. NOS inhibitor (l-NAME) and TRPV-1 inhibitor (Capsazepine) were utilized to confirm the implication of both signaling mechanisms in DPP-4 inhibition-induced at the level of IS. Findings show that Sitg (50 mg) resulted in significant decrease in IS and DPP-4 activity, and significant increase in GLP-1, NOS activity, e-NOS expression, TRPV-1 level and TRPC-1 expression, compared to controls. Results of CGRP are in line with TRPV-1, as a downstream regulatory effect. NOS system and transient receptor potential (TRP) channels can contribute to DPP-4 inhibition-mediated cardioprotection against I/R injury using Sitagliptin.


Oxidative Medicine and Cellular Longevity | 2017

Cardioprotective Effect of Selective Estrogen Receptor Modulator Raloxifene Are Mediated by Heme Oxygenase in Estrogen-Deficient Rat

Anikó Pósa; Renáta Szabó; Krisztina Kupai; Anikó Berkó; Médea Veszelka; Gergő Szűcs; Denise Börzsei; Mariann Gyöngyösi; Imre Pavo; Zoltán Deim; Zoltán Szilvássy; Bela Juhasz; Csaba Varga

Estrogens and raloxifene (RAL) have beneficial effects on certain cardiovascular indices in postmenopausal women characterized by estrogen deficiency. Heme oxygenase (HO) activity is increased by 17β-estradiol (E2) and RAL in estrogen-deficient rat resulting in vasorelaxation mediated by carbon monoxide. We determined the expressions of HO in cardiac and aortic tissues after ovariectomy (OVX) and subsequent RAL or E2 treatment. We investigated the effects of pharmacological inhibition of HO enzyme on the arginine vasopressin- (AVP-) induced blood pressure in vivo, the epinephrine- and phentolamine-induced electrocardiogram ST segment changes in vivo, and the myeloperoxidase (MPO) enzyme activity. When compared with intact females, OVX decreased the HO-1 and HO-2 expression, aggravated the electrocardiogram signs of heart ischemia and the blood pressure response to AVP, and increased the cardiac MPO. E2 and RAL are largely protected against these negative impacts induced by OVX. The pharmacological inhibition of HO in E2- or RAL-treated OVX animals, however, restored the cardiovascular status close to that observed in nontreated OVX animals. The decreased expression of HO enzymes and the changes in blood pressure ischemia susceptibility and inflammatory state in OVX rat can be reverted by the administration of E2 or RAL partly through its antioxidant and anti-inflammatory roles.


Journal of Molecular and Cellular Cardiology | 2013

MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart

Zoltán V. Varga; Krisztina Kupai; Gergő Szűcs; Renáta Gáspár; János Pálóczi; Nóra Faragó; Ágnes Zvara; László G. Puskás; Zsolt Rázga; László Tiszlavicz; Péter Bencsik; Anikó Görbe; Csaba Csonka; Péter Ferdinandy; Tamás Csont


Journal of Inflammation | 2014

The combination of red palm oil and rooibos show anti-inflammatory effects in rats

Emma Katengua-Thamahane; Jeanine L. Marnewick; Olawale R Ajuwon; Novel N. Chegou; Gergő Szűcs; Péter Ferdinandy; Tamás Csont; Csaba Csonka; Jacques van Rooyen


Cardiovascular Drugs and Therapy | 2013

Cardioprotection by Farnesol: Role of the Mevalonate Pathway

Gergő Szűcs; Zsolt Murlasits; Szilvia Török; Gabriella F. Kocsis; János Pálóczi; Anikó Görbe; Tamás Csont; Csaba Csonka; Péter Ferdinandy


Cardiovascular Diabetology | 2016

Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats.

Márta Sárközy; Gergő Szűcs; Veronika Fekete; Márton Pipicz; Katalin Éder; Renáta Gáspár; Andrea Sója; Judit Pipis; Péter Ferdinandy; Csaba Csonka; Tamás Csont

Collaboration


Dive into the Gergő Szűcs's collaboration.

Top Co-Authors

Avatar

Péter Ferdinandy

Albert Szent-Györgyi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

László G. Puskás

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge