Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Fritz is active.

Publication


Featured researches published by Gerhard Fritz.


Journal of Clinical Investigation | 2003

CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes

Imke Tiede; Gerhard Fritz; Susanne Strand; Daniela Poppe; Radovan Dvorsky; Dennis Strand; Hans A. Lehr; Stefan Wirtz; Christoph Becker; Raja Atreya; Jonas Mudter; Kai Hildner; Brigitte Bartsch; Martin H. Holtmann; Richard S. Blumberg; Henning Walczak; Heiko Iven; Peter R. Galle; Mohammad Reza Ahmadian; Markus F. Neurath

Azathioprine and its metabolite 6-mercaptopurine (6-MP) are immunosuppressive drugs that are used in organ transplantation and autoimmune and chronic inflammatory diseases such as Crohn disease. However, their molecular mechanism of action is unknown. In the present study, we have identified a unique and unexpected role for azathioprine and its metabolites in the control of T cell apoptosis by modulation of Rac1 activation upon CD28 costimulation. We found that azathioprine and its metabolites induced apoptosis of T cells from patients with Crohn disease and control patients. Apoptosis induction required costimulation with CD28 and was mediated by specific blockade of Rac1 activation through binding of azathioprine-generated 6-thioguanine triphosphate (6-Thio-GTP) to Rac1 instead of GTP. The activation of Rac1 target genes such as mitogen-activated protein kinase kinase (MEK), NF-kappaB, and bcl-x(L) was suppressed by azathioprine, leading to a mitochondrial pathway of apoptosis. Azathioprine thus converts a costimulatory signal into an apoptotic signal by modulating Rac1 activity. These findings explain the immunosuppressive effects of azathioprine and suggest that 6-Thio-GTP derivates may be useful as potent immunosuppressive agents in autoimmune diseases and organ transplantation.


International Journal of Cancer | 1999

Rho GTPases are over-expressed in human tumors.

Gerhard Fritz; Ingo Just; Bernd Kaina

Small GTPases of the Rho family are involved in the regulation of a variety of cellular processes, such as the organization of the microfilamental network, cell‐cell contact and malignant transformation. To address the question of whether Rho proteins are involved in carcinogenesis in man, we compared their expression in tumors from colon, breast and lung with that of the corresponding normal tissue originating from the same patient. As shown by Rho‐specific 32P‐ADP‐ribosylation, as well as Western‐blot analysis, the amount of RhoA protein was largely increased in all 3 types of tumors tested. The most dramatic differences in the expression of Rho GTPases were observed in breast tissue. All breast tumors analyzed showed high levels of RhoA, Rac and Cdc42 proteins, whereas in the corresponding normal tissue these Rho proteins were hardly or not detectable. Progression of breast tumors from WHO grade I to grade III was accompanied by a significant average increase in RhoA protein. Overall, increase in the amount of Rho GTPases, in particular RhoA, appears to be a frequent event in different types of human tumors. This supports the view that Rho GTPases are involved in human carcinogenesis. Int. J. Cancer 81:682–687, 1999.


Current Cancer Drug Targets | 2006

Rho GTPases: Promising Cellular Targets for Novel Anticancer Drugs

Gerhard Fritz; Bernd Kaina

Ras-homologous (Rho) GTPases play a pivotal role in the regulation of numerous cellular functions associated with malignant transformation and metastasis. Rho GTPases are localized at membranes and become activated upon stimulation of cell surface receptors. In their GTP-bound (=active) state, Rho proteins bind to effector proteins, thereby triggering specific cellular responses. Members of the Rho family of small GTPases are key regulators of actin reorganization, cell motility, cell-cell and cell-extracellular matrix (ECM) adhesion as well as of cell cycle progression, gene expression and apoptosis. Each of these functions is of importance for the development and progression of cancer. Furthermore, Rho guanine exchange factors (GEFs) are often oncogenic and the expression level of Rho GTPases frequently increases with malignancy. Rho proteins also affect cellular susceptibility to DNA damaging agents, including antineoplastic drugs and ionizing radiation (IR). Thus, modulation of Rho driven mechanisms may influence the therapeutic efficiency and/or the side effects of conventional antineoplastic therapy. Because of their pleiotropic functions, Rho proteins appear to be promising targets for the development of novel anticancer drugs. Experimental approaches to inhibit Rho (and Ras) have focused on the attenuation of their C-terminal isoprenylation. This is because C-terminal lipid modification is required for correct intracellular localization and function of Rho/Ras. Inhibitors of farnesyltransferase (FTI), geranylgeranyltransferase (GGTI) as well as of HMG-CoA-reductase (i. e. statins) have been investigated with respect to their usefulness in tumor therapy. The studies showed that these compounds affect tumor progression and furthermore have impact on the frequency of cell death induced by tumor therapeutics. A possible drawback of inhibitors of isoprenylation is their poor selectivity for individual Rho GTPases. Therefore, specific inhibitors of individual Rho functions (notably RhoA-, RhoB-, Rac1- or Cdc42-related functions) are predicted to be of great therapeutic benefit. Indeed, compounds developed as specific inhibitors of the RhoA-effector molecule Rho-kinase (ROK) have been demonstrated to exert anti-metastatic activity in vivo.


Journal of Immunology | 2006

Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on rac proteins

Daniela Poppe; Imke Tiede; Gerhard Fritz; Christoph Becker; Brigitte Bartsch; Stefan Wirtz; Dennis Strand; Shinya Tanaka; Peter R. Galle; Xosé R. Bustelo; Markus F. Neurath

We have shown recently that the azathioprine metabolite 6-Thio-GTP causes immunosuppression by blockade of GTPase activation in T lymphocytes. In the present study, we describe a new molecular mechanism by which 6-Thio-GTP blocks GTPase activation. Although 6-Thio-GTP could bind to various small GTPases, it specifically blocked activation of Rac1 and Rac2 but not of closely related Rho family members such as Cdc42 and RhoA in primary T cells upon stimulation with αCD28 or fibronectin. Binding of 6-Thio-GTP to Rac1 did not suppress Rac effector coupling directly but blocked Vav1 exchange activity upon 6-Thio-GTP hydrolysis, suggesting that 6-Thio-GTP loading leads to accumulation of 6-Thio-GDP-loaded, inactive Rac proteins over time by inhibiting Vav activity. In the absence of apoptosis, blockade of Vav-mediated Rac1 activation led to a blockade of ezrin-radixin-moesin dephosphorylation in primary T cells and suppression of T cell-APC conjugation. Azathioprine-generated 6-Thio-GTP thus prevents the development of an effective immune response via blockade of Vav activity on Rac proteins. These findings provide novel insights into the immunosuppressive effects of azathioprine and suggest that antagonists of the Vav-Rac signaling pathway may be useful for suppression of T cell-dependent pathogenic immune responses.


British Journal of Pharmacology | 1998

Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-κB-signaling pathways

Hartmut Kleinert; Thomas Wallerath; Gerhard Fritz; Irmgard Ihrig-Biedert; Fernando Rodriguez-Pascual; David A. Geller; Ulrich Förstermann

1 In human epithelial‐like DLD‐1 cells, nitric oxide synthase (NOS) II expression was induced by interferon‐γ (100 u ml−1) alone and, to a larger extent, by a cytokine mixture (CM) consisting of interferon‐γ, interleukin‐1β (50 u ml−1) and tumor necrosis factor‐α (10 ng ml−1). 2 CM‐induced NOS II expression was inhibited by tyrphostin B42 (mRNA down to 1%; nitrite production down to 0.5% at 300 μM) and tyrphostin A25 (mRNA down to 24%, nitrite production down to 1% at 200 μM), suggesting the involvement of janus kinase 2 (JAK‐2). Tyrphostin B42 also blocked the CM‐induced JAK‐2 phosphorylation (kinase assay) and reduced the CM‐stimulated STAT1α binding activity (gel shift analysis). 3 CM reduced the nuclear binding activity of transcription factor AP‐1. A heterogenous group of compounds, that stimulated the expression of c‐fos/c‐jun, enhanced the nuclear binding activity of AP‐1. This group includes the protein phosphatase inhibitors calyculin A, okadaic acid, and phenylarsine oxide, as well as the inhibitor of translation anisomycin. All of these compounds reduced CM‐induced NOS II mRNA expression (to 9% at 50 nM calyculin A; to 28% at 500 nM okadaic acid; to 18% at 10 μM phenylarsine oxide; and to 19% at 100 ng ml−1 anisomycin) without changing NOS II mRNA stability. In cotransfection experiments, overexpression of c‐Jun and c‐Fos reduced promoter activity of a 7 kb DNA fragment of the 5′‐flanking sequence of the human NOS II gene to 63%. 4 Nuclear extracts from resting DLD‐1 cells showed significant binding activity for transcription factor NF‐κB, which was only slightly enhanced by CM. The NF‐κB inhibitors dexamethasone (1 μM), 3,4‐dichloroisocoumarin (50 μM), panepoxydone (5 μg ml−1) and pyrrolidine dithiocarbamate (100 μM) produced no inhibition of CM‐induced NOS II induction. 5 We conclude that in human DLD‐1 cells, the interferon‐γ–JAK‐2‐STAT1α pathway is important for NOS II induction. AP‐1 (that is downregulated by CM) seems to be a negative regulator of NOS II expression. NF‐κB, which is probably important for basal activity of the human NOS II promoter, is unlikely to function as a major effector of CM in DLD‐1 cells.


Toxicology | 2003

APE/Ref-1 and the mammalian response to genotoxic stress.

Gerhard Fritz; Sabine Grösch; Maja T. Tomicic; Bernd Kaina

Human apurinic/apyrimidinic endonuclease/redox factor-1 (hAPE/Ref-1) is a multifunctional protein involved in the repair of DNA damaged by oxidative or alkylating compounds as well as in the regulation of stress inducible transcription factors such as AP-1, NF-kappaB, HIF-1 and p53. With respect to transcriptional regulation, both redox dependent and independent mechanisms have been described. APE/Ref-1 also acts as a transcriptional repressor. Recent data indicate that APE/Ref-1 negatively regulates the activity of the Ras-related GTPase Rac1. How these different physiological activities of APE/Ref-1 are coordinated is poorly understood. So far, convincing evidence is available that the expression of the APE/Ref-1 gene is inducible by oxidative stress and that overexpressed APE/Ref-1 protein protects cells against the genotoxic and cell killing effects of reactive oxygen species (ROS), whereas down-regulation sensitizes cells. Therefore, APE/Ref-1 can be considered to be part of an adaptive cellular response mechanism to oxidative genotoxic stress. The physiological relevance of increase of either the repair or redox activity of APE/Ref-1 for this adaptive response is unclear. Data will be shown that transfection of the truncated protein exhibiting either one of the activities provoked increase of resistance. Since APE/Ref-1 expression level and intracellular localization is variable in different types of tumors and frequently found to be different in non-malignant compared to the corresponding malignant human tissue, the protein is thought to be a diagnostic and prognostic tumor marker. Because of its involvement in DNA repair and apoptosis-related signaling mechanisms, APE/Ref-1 is also being discussed as a novel target for tumor-therapeutic approaches.


Journal of Biological Chemistry | 1997

rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase.

Gerhard Fritz; Bernd Kaina

The small GTPase RhoB is immediate-early inducible by DNA damaging treatments and thus part of the early response of eukaryotic cells to genotoxic stress. To investigate the regulation of this cellular response, we isolated the gene forrhoB from a mouse genomic library. Sequence analysis of therhoB gene showed that its coding region does not contain introns. The promoter region of rhoB harbors regulatory elements such as TATA, CAAT, and Sp1 boxes but not consensus sequences for AP-1, Elk-1, or c-Jun/ATF-2. The rhoB promoter was activated by UV irradiation, but not by 12-O-tetradecanoylphorbol-13-acetate treatment.rhoB promoter deletion constructs revealed a fragment of 0.17 kilobases in size which was sufficient in eliciting the UV response. This minimal promoter fragment contains TATA and CAAT boxes but no other known regulatory elements. Neither MEK inhibitor PD98059 nor p38 kinase inhibitor SB203580 blocked stimulation ofrhoB by UVC (UV light, 254 nm) which indicates that ERK or p38 mitogen-activated protein (MAP) kinase are not involved in the UV induction of rhoB. Also, phosphatidylinositol 3-kinase inhibitor wortmannin, which blocks UV stimulation of both JNK and p38 MAP kinase, did not inhibit rhoB activation. Furthermore, activation of JNK by interleukin-1β did not affect rhoBexpression. These data indicate that JNK is not involved in the regulation of rhoB. Overexpression of wild-type Rac as well as the Rho guanine-dissociation inhibitor caused activation ofrhoB. Wild-type RhoB inhibited both basal and UV-stimulatedrhoB promoter activity, indicating a negative regulatory feedback by RhoB itself. The data provide evidence both for a signal transduction pathway independent of JNK, ERK, and p38 MAP kinase to be involved in the induction of rhoB by genotoxic stress, and furthermore, indicate autoregulation of rhoB.


Infection and Immunity | 2002

Proteasomal Degradation of Cytotoxic Necrotizing Factor 1-Activated Rac

Maria Lerm; Marius Pop; Gerhard Fritz; Klaus Aktories; Gudula Schmidt

ABSTRACT The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli has been shown to activate members of the Rho family by deamidation of glutamine 63. This amino acid is essential for hydrolysis of GTP, and any substitution results in a constitutively active Rho. Activation of Rho induces the formation of stress fibers, filopodia, and membrane ruffles due to activation of RhoA, Cdc42, and Rac, respectively. Here we show that the level of endogenous Rac decreased in CNF1-treated HEK293 and HeLa cells. The amount of mRNA remained unaffected, leaving the possibility that Rac is subject to proteolytic degradation. Treatment of cells with lactacystin, an inhibitor of the 26S proteasome, protected Rac from degradation. We have previously shown that CNF1 activates the c-Jun N-terminal kinase (JNK) only transiently in HeLa cells (M. Lerm, J. Selzer, A. Hoffmeyer, U. R. Rapp, K. Aktories, and G. Schmidt, Infect. Immun. 67:496-503, 1998). Here we show that CNF1-induced JNK activation is stabilized in the presence of lactacystin. The data indicate that Rac is degraded by a proteasome-dependent pathway in CNF1-treated cells.


Oncogene | 2001

Ultraviolet light-induced DNA damage triggers apoptosis in nucleotide excision repair-deficient cells via Bcl-2 decline and caspase-3/-8 activation.

Torsten Dunkern; Gerhard Fritz; Bernd Kaina

Ultraviolet (UV) light is a potent mutagenic and genotoxic agent. Whereas DNA damage induced by UV light is known to be responsible for UV-induced genotoxicity, its role in triggering apoptosis is still unclear. We addressed this issue by comparing nucleotide excision repair (NER) deficient 27-1 and 43-3B Chinese hamster (CHO) cells with the corresponding wild-type and ERCC-1 complemented cells. It is shown that NER deficient cells are dramatically hypersensitive to UV-C induced apoptosis, indicating that DNA damage is the major stimulus for the apoptotic response. Apoptosis triggered by UV-C induced DNA damage is related to caspase- and proteosome-dependent degradation of Bcl-2 protein. The expression of other members of the Bcl-2 family such as Bax, Bcl-xL and Bak were not affected. Bcl-2 decline is causally involved in UV-C induced apoptosis since overexpression of Bcl-2 protected NER deficient cells against apoptosis. We also demonstrate that caspase-8, caspase-9 and caspase-3 are activated and PARP is cleaved in response to unrepaired UV-C induced DNA damage. Caspase-8 activation occurred independently of CD95 receptor activation since CD95R/FasR and CD95L/FasL were not altered in expression, and transfection of transdominant negative FADD failed to block apoptosis. Overall, the data demonstrate that UV-C induced non-repaired DNA damage triggers apoptosis in NER deficient fibroblasts involving components of the intrinsic mitochondrial damage pathway.


Radiotherapy and Oncology | 2009

Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

Christian Ostrau; Johannes Hülsenbeck; Melanie Herzog; Arno Schad; Michael Torzewski; Karl J. Lackner; Gerhard Fritz

BACKGROUND AND PURPOSE HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. MATERIALS AND METHODS Four hours to 24h after total body irradiation (6Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5Gy and analyses were performed 3weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. RESULTS Lovastatin attenuated IR-induced activation of NF-kappaB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFalpha, IL-6, TGFbeta, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. gammaH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. CONCLUSIONS Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

Collaboration


Dive into the Gerhard Fritz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus F. Neurath

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imke Atreya

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Just

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge