Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard H. Buck-Sorlin is active.

Publication


Featured researches published by Gerhard H. Buck-Sorlin.


Journal of Experimental Botany | 2010

Functional–structural plant modelling: a new versatile tool in crop science

J. Vos; Jochem B. Evers; Gerhard H. Buck-Sorlin; Bruno Andrieu; Michaël Chelle; P.H.B. de Visser

Plants react to their environment and to management interventions by adjusting physiological functions and structure. Functional-structural plant models (FSPM), combine the representation of three-dimensional (3D) plant structure with selected physiological functions. An FSPM consists of an architectural part (plant structure) and a process part (plant functioning). The first deals with (i) the types of organs that are initiated and the way these are connected (topology), (ii) co-ordination in organ expansion dynamics, and (iii) geometrical variables (e.g. leaf angles, leaf curvature). The process part may include any physiological or physical process that affects plant growth and development (e.g. photosynthesis, carbon allocation). This paper addresses the following questions: (i) how are FSPM constructed, and (ii) for what purposes are they useful? Static, architectural models are distinguished from dynamic models. Static models are useful in order to study the significance of plant structure, such as light distribution in the canopy, gas exchange, remote sensing, pesticide spraying studies, and interactions between plants and biotic agents. Dynamic models serve quantitatively to integrate knowledge on plant functions and morphology as modulated by environment. Applications are in the domain of plant sciences, for example the study of plant plasticity as related to changes in the red:far red ratio of light in the canopy. With increasing availability of genetic information, FSPM will play a role in the assessment of the significance towards plant performance of variation in genetic traits across environments. In many crops, growers actively manipulate plant structure. FSPM is a promising tool to explore divergent management strategies.


Annals of Botany | 2011

How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

V. Sarlikioti; P.H.B. de Visser; Gerhard H. Buck-Sorlin; L.F.M. Marcelis

BACKGROUND AND AIMS Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. METHODS Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. KEY RESULTS Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6-10 % for light absorption and photosynthesis. CONCLUSIONS At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.


Plant Cell and Environment | 2010

Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination

Katja Witzel; Annette Weidner; Giridara-Kumar Surabhi; Rajeev K. Varshney; Gotthard Kunze; Gerhard H. Buck-Sorlin; A. Börner; Hans-Peter Mock

In the present paper, we based a search for candidates underlying different levels of salinity tolerance during germination in the Oregon Wolfe Barley mapping population (DOM x REC) by proteomic profiling of the mature grain of lines showing differing levels of salinity tolerance. By contrasting the parents DOM and REC, displaying divergent stress responses, and two tolerant and two sensitive segregants, six protein spots were identified that showed a differential abundance between the tolerant and the sensitive lines. The tolerant lines expressed a higher level of 6-phosphogluconate dehydrogenase and glucose/ribitol dehydrogenase (Glc/RibDH). Both proteins were heterologously over-expressed in an osmo-sensitive yeast strain and over-expression of Glc/RibDH resulted in an enhanced ability of yeast transformants to grow on salt containing media. A quantitative trait locus (QTL) analysis of the population germinating at different salt concentrations led to the identification of two chromosome regions on 5H and one on 7H associated with salt stress response. A dense barley transcript map was employed to map the genomic region of all identified proteins. Two of these, heat-shock protein 70 and Glc/RibDH, co-localized with the identified QTL on chromosome 5H. The putative functional role of the candidates is discussed.


Annals of Botany | 2011

A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes

Lifeng Xu; Michael Henke; Jun Zhu; Winfried Kurth; Gerhard H. Buck-Sorlin

BACKGROUND AND AIMS Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype-phenotype model, we present here a three-dimensional functional-structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. METHODS The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. KEY RESULTS Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. CONCLUSIONS We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed.


Annals of Botany | 2011

Towards a functional–structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure

Gerhard H. Buck-Sorlin; Pieter H. B. de Visser; Michael Henke; V. Sarlikioti; Gerie W. A. M. van der Heijden; L.F.M. Marcelis; J. Vos

BACKGROUND AND AIMS The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional-structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity. METHODS The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model. KEY RESULTS The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios. CONCLUSIONS The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.


Lecture Notes in Computer Science | 2004

Relational growth grammars – a graph rewriting approach to dynamical systems with a dynamical structure

Winfried Kurth; Ole Kniemeyer; Gerhard H. Buck-Sorlin

Relational growth grammars (RGG) are a graph rewriting formalism which extends the notations and semantics of Lindenmayer systems and which allows the specification of dynamical processes on dynamical structures, particularly in biological and chemical applications. RGG were embedded in the language XL, combining rule-based and conventional object-oriented constructions. Key features of RGG and of the software GroIMP (Growth grammar related Interactive Modelling Platform) are listed. Five simple examples are shown which demonstrate the essential ideas and possibilities of RGG: signal propagation in a network, cellular automata, globally-sensitive growth of a plant, a chemical prime number generator, and a polymerisation model using a simple mass-spring kinetics.


2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications | 2009

Modelling of Spatial Light Distribution in the Greenhouse: Description of the Model

Gerhard H. Buck-Sorlin; Reinhard Hemmerling; J. Vos; Pieter H. B. de Visser

In Dutch greenhouse horticulture, use of additional assimilation light in the form of lamps plays an important role. So far, little is known about the effect of lamp positions, types, and spectra, on light distribution per se and on light interception by the crop canopy in relation to the arrangement and architecture of different crops. We present here a new model of a SON-T assimilation lamp, implemented using the interactive modelling platform GroIMP. A set of virtual lamps is positioned in a simulated 3D greenhouse, which latter exhibits main geometric features and semitransparent surface textures imitating glass and construction elements. Here we show results of the simulation of spatial distribution of light. The application of such virtual lamps for the simulation of light interception in static virtual crops of rose and tomato is briefly illustrated and the extension of this model to other lamp types, such as LED, is discussed.


Frontiers in Plant Science | 2014

The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica)

Julienne Fanwoua; Emna Baïram; Mickaël Delaire; Gerhard H. Buck-Sorlin

Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning.


Frontiers in Plant Science | 2014

Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer.

Pieter H. B. de Visser; Gerhard H. Buck-Sorlin; Gerie W. A. M. van der Heijden

Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20°) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential.


2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications | 2009

A Rule-Based Functional-Structural Model of Rice Considering Source and Sink Functions

Lifeng Xu; Michael Henke; Jun Zhu; Winfried Kurth; Gerhard H. Buck-Sorlin

As a first step towards a generic genotype-phenotype model of rice, we present here a model of the growth and morphology of rice in combination with ecophysiological processes using the technique of functional-structural plant modelling (FSPM) and the interactive modelling platform GroIMP along with the graph-based Relational Growth Grammar formalism. The model constitutes a simple yet functionally coherent phenotype model of rice, consisting of a set of morphogenetic RGG rules describing an “average” developmental course and final morphology, partially linking yield traits to processes (tiller and grain number, stem length, grain filling rate, grain weight).

Collaboration


Dive into the Gerhard H. Buck-Sorlin's collaboration.

Top Co-Authors

Avatar

Winfried Kurth

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ole Kniemeyer

Brandenburg University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Henke

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

J. Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

L.F.M. Marcelis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter H. B. de Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P.H.B. de Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Sarlikioti

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge