Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Krinner is active.

Publication


Featured researches published by Gerhard Krinner.


Nature | 2005

Europe-wide reduction in primary productivity caused by the heat and drought in 2003

Ph. Ciais; Markus Reichstein; Nicolas Viovy; A. Granier; Jérôme Ogée; Vincent Allard; Marc Aubinet; Nina Buchmann; Chr. Bernhofer; Arnaud Carrara; F. Chevallier; N. de Noblet; Andrew D. Friend; Pierre Friedlingstein; Thomas Grünwald; Bernard Heinesch; P. Keronen; Alexander Knohl; Gerhard Krinner; Denis Loustau; Giovanni Manca; Giorgio Matteucci; F. Miglietta; Jean-Marc Ourcival; D. Papale; Kim Pilegaard; Serge Rambal; Günther Seufert; Jean-François Soussana; M. J. Sanz

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr-1) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europes primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Global Biogeochemical Cycles | 2005

A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system

Gerhard Krinner; Nicolas Viovy; Nathalie de Noblet-Ducoudré; Jérôme Ogée; Jan Polcher; Pierre Friedlingstein; Philippe Ciais; Stephen Sitch; I. Colin Prentice

This work presents a new dynamic global vegetation model designed as an extension of an existing surface-vegetation-atmosphere transfer scheme which is included in a coupled ocean-atmosphere general circulation model. The new dynamic global vegetation model simulates the principal processes of the continental biosphere influencing the global carbon cycle (photosynthesis, autotrophic and heterotrophic respiration of plants and in soils, fire, etc.) as well as latent, sensible, and kinetic energy exchanges at the surface of soils and plants. As a dynamic vegetation model, it explicitly represents competitive processes such as light competition, sapling establishment, etc. It can thus be used in simulations for the study of feedbacks between transient climate and vegetation cover changes, but it can also be used with a prescribed vegetation distribution. The whole seasonal phenological cycle is prognostically calculated without any prescribed dates or use of satellite data. The model is coupled to the IPSL-CM4 coupled atmosphere-ocean-vegetation model. Carbon and surface energy fluxes from the coupled hydrology-vegetation model compare well with observations at FluxNet sites. Simulated vegetation distribution and leaf density in a global simulation are evaluated against observations, and carbon stocks and fluxes are compared to available estimates, with satisfying results.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Permafrost carbon-climate feedbacks accelerate global warming

Charles D. Koven; Bruno Ringeval; Pierre Friedlingstein; Philippe Ciais; P. Cadule; Dmitry Khvorostyanov; Gerhard Krinner; Charles Tarnocai

Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent.


Geophysical Research Letters | 1997

GCM analysis of local influences on ice core δ signals

Gerhard Krinner; Christophe Genthon; Jean Jouzel

A high resolution GCM is used to examine the effect of changes in local surface climate parameters on the ice sheets that can influence the interpretation of the isotopic signal of the ice from deep cores. The model suggests that the 10°C difference between the LGM surface temperature deduced from borehole thermometry and that deduced from the water isotope analysis to a great extent may be due to a modification of the precipitation seasonality in central Greenland. For central East Antarctica, the model tends to suggest a weak opposite bias.


Geophysical Research Letters | 2005

Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model

J. Lathière; D. A. Hauglustaine; N. de Noblet-Ducoudré; Gerhard Krinner; Gerd Folberth

Based on an interactive global biogenic emission and dynamic vegetation model, we investigate the evolution of volatile organic compound (VOC) emissions by the terrestrial biosphere in four scenarios: the Last Glacial Maximum (21,000 years BP), the preindustrial (1850s), present-day (1990s) and the future (2100). The combined effects of foliar expansion, climate change and ecosystems redistribution impact strongly on biogenic emissions. Total biogenic VOC emissions increase from 331 TgC/yr at the LGM to 702 TgC/yr at the preindustrial, 725 TgC/yr at present-day and to 1251 TgC/yr under future conditions. If the tropics remain a major source region, a substantial decrease in VOC emissions is calculated over Amazonia for 2100 due to the recession of tropical forests in response to climate change. The Northern Hemisphere becomes a significant source of VOC in the future and globally, emissions increase by 27% for isoprene and 51% for monoterpenes compared to the present.


Tellus B | 2008

Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition

Dmitry Khvorostyanov; Gerhard Krinner; P. Ciais; Martin Heimann; Sergey Zimov

We constructed a new model to study the sensitivity of permafrost carbon stocks to future climate warming. The one-dimensional model solves an equation for diffusion of heat penetrating from the overlying atmosphere and takes into account additional in situ heat production by active soil microorganisms. Decomposition of frozen soil organic matter and produced CO2 and methane fluxes result from an interplay of soil heat conduction and phase transitions, respiration, methanogenesis and methanotrophy processes. Respiration and methanotrophy consume soil oxygen and thus can only develop in an aerated top-soil column. In contrast, methanogenesis is not limited by oxygen and can be sustained within the deep soil, releasing sufficient heat to further thawin depth the frozen carbon-rich soil organic matter. Heat production that accompanies decomposition and methanotrophy can be an essential process providing positive feedback to atmospheric warming through self-sustaining transformation of initially frozen soil carbon into CO2 and CH4. This supplementary heat becomes crucial, however, only under certain climate conditions. Oxygen limitation to soil respiration slows down the process, so that the mean flux of carbon released during the phase of intense decomposition is more than two times less than without oxygen limitation. Taking into account methanogenesis increases the mean carbon flux by 20%. Part II of this study deals with mobilization of frozen carbon stock in transient climate change scenarios with more elaborated methane module, which makes it possible to consider more general cases with various site configurations. Part I (this manuscript) studies mobilization of 400 GtC carbon stock of the Yedoma in response to a stepwise rapid warming focusing on the role of supplementary heat that is released to the soil during decomposition of organic matter.


Journal of Geophysical Research | 1997

Studies of the Antarctic climate with a stretched-grid general circulation model

Gerhard Krinner; Christophe Genthon; Zhao-Xin Li; Phu Le Van

A stretched-grid general circulation model (GCM), derived from the Laboratoire de Meteorologie Dynamique (LMD) GCM is used for a multiyear high-resolution simulation of the Antarctic climate. The resolution in the Antarctic region reaches 100 km. In order to correctly represent the polar climate, it is necessary to implement several modifications in the model physics. These modifications mostly concern the parameterizations of the atmospheric boundary layer. The simulated Antarctic climate is significantly better in the stretched-grid simulation than in the regular-grid control run. The katabatic wind regime is well captured, although the winds may be somewhat too weak. The annual snow accumulation is generally close to the observed values, although local discrepancies between the simulated annual accumulation and observations remain. The simulated continental mean annual accumulation is 16.2 cm y -1 . Features like the surface temperature and the temperature inversion over large parts of the continent are correctly represented. The model correctly simulates the atmospheric dynamics of the rest of the globe.


Tellus B | 2003

Tropospheric transport of continental tracers towards Antarctica under varying climatic conditions

Gerhard Krinner; Christophe Genthon

We present a method to analyse tracer transit time climatologies based on the concept of tracer age.The method consists of introducing idealized, short-lived radioactively decaying tracers in a generalcirculation model of the atmosphere. Tracer age since emission is calculated at any given place in theatmosphere from the ratio of the concentrations of tracers with different lifetimes emitted over thesame source area. An obvious use of this method is the analysis of transport of real tracers with similarlifetimes (such as dust particles) during different climatic periods. Here, this method is applied totransport from southern hemisphere continental source areas towards Antarctica at the present, the lastglacial maximum (21 kyr BP) and the last glacial inception (115 kyr BP). It is found that the variationover time of atmospheric transport efficiency towards Antarctica depends on the tracer source region:changes for Patagonian tracers differ from those for tracers originating over Australia and southernAfrica. Transport towards Antarctica during the last glacial maximum (LGM) is faster for Patagonian, but not for Australian and Southern African tracers. It is shown that for the time of the last glacialinception, tracer transit time towards Antarctica is not significantly different from the present, althoughsigns of a more vigorous atmospheric circulation can be seen in the simulation.


Philosophical Transactions of the Royal Society A | 2015

A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

C. Koven; Edward A. G. Schuur; Christina Schädel; Theodore J. Bohn; Eleanor J. Burke; Guangsheng Chen; Xiaodong Chen; Philippe Ciais; Guido Grosse; Jennifer W. Harden; Daniel J. Hayes; Gustaf Hugelius; Elchin Jafarov; Gerhard Krinner; Peter Kuhry; David M. Lawrence; Andrew H. MacDougall; Sergey S. Marchenko; A. D. McGuire; Susan M. Natali; D. J. Nicolsky; David Olefeldt; Shushi Peng; Vladimir E. Romanovsky; Kevin Schaefer; Jens Strauss; Claire C. Treat; Merritt R. Turetsky

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.


Geophysical Research Letters | 2009

Sensitivity of the Late Saalian (140 kyrs BP) and LGM (21 kyrs BP) Eurasian ice sheet surface mass balance to vegetation feedbacks

F. Colleoni; Gerhard Krinner; Martin Jakobsson

This work uses an atmospheric general circulation model (AGCM) asynchronously coupled to an equilibrium vegetation model to investigate whether vegetation feedbacks could be one of the reasons why ...

Collaboration


Dive into the Gerhard Krinner's collaboration.

Top Co-Authors

Avatar

Christophe Genthon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Masa Kageyama

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Shushi Peng

University of Grenoble

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Ritz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Favier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge