Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Meissner is active.

Publication


Featured researches published by Gerhard Meissner.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure

Jian-Fu Chen; Elizabeth P. Murchison; Ruhang Tang; Thomas E. Callis; Mariko Tatsuguchi; Zhongliang Deng; Mauricio Rojas; Scott M. Hammond; Michael D. Schneider; Craig H. Selzman; Gerhard Meissner; Cam Patterson; Gregory J. Hannon; Da-Zhi Wang

Cardiovascular disease is the leading cause of human morbidity and mortality. Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy associated with heart failure. Here, we report that cardiac-specific knockout of Dicer, a gene encoding a RNase III endonuclease essential for microRNA (miRNA) processing, leads to rapidly progressive DCM, heart failure, and postnatal lethality. Dicer mutant mice show misexpression of cardiac contractile proteins and profound sarcomere disarray. Functional analyses indicate significantly reduced heart rates and decreased fractional shortening of Dicer mutant hearts. Consistent with the role of Dicer in animal hearts, Dicer expression was decreased in end-stage human DCM and failing hearts and, most importantly, a significant increase of Dicer expression was observed in those hearts after left ventricle assist devices were inserted to improve cardiac function. Together, our studies demonstrate essential roles for Dicer in cardiac contraction and indicate that miRNAs play critical roles in normal cardiac function and under pathological conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO.

Junhui Sun; Chunlin Xin; Jerry P. Eu; Jonathan S. Stamler; Gerhard Meissner

We have shown previously that at physiologically relevant oxygen tension (pO2 ≈ 10 mmHg), NO S-nitrosylates 1 of ≈50 free cysteines per ryanodine receptor 1 (RyR1) subunit and transduces a calcium-sensitizing effect on the channel by means of calmodulin (CaM). It has been suggested that cysteine-3635 is part of a CaM-binding domain, and its reactivity is attenuated by CaM [Porter Moore, C., Zhang, J. Z., Hamilton, S. L. (1999) J. Biol. Chem. 274, 36831–36834]. Therefore, we tested the hypothesis that the effect of NO was mediated by C3635. The full-length RyR1 single-site C3635A mutant was generated and expressed in HEK293 cells. The mutation resulted in the loss of CaM-dependent NO modulation of channel activity and reduced S-nitrosylation by NO to background levels but did not affect NO-independent channel modulation by CaM or the redox sensitivity of the channel to O2 and glutathione. Our results reveal that different cysteines within the channel have been adapted to serve in nitrosative and oxidative responses, and that S-nitrosylation of the cysteine-containing CaM-binding domain underlies the mechanism of CaM-dependent regulation of RyR1 by NO.


Archives of Biochemistry and Biophysics | 1988

Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds

Eric Rousseau; Jeffrey Ladine; Qi Yi Liu; Gerhard Meissner

The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.


Biophysical Journal | 1995

Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor)

Ashutosh Tripathy; Le Xu; Geoffrey Mann; Gerhard Meissner

The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channels regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.


Biophysical Journal | 1986

Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel

Eric Rousseau; J.S. Smith; J.S. Henderson; Gerhard Meissner

Purified canine cardiac sarcoplasmic reticulum vesicles were passively loaded with 45CaCl2 and assayed for Ca2+ releasing activity according to a rapid quench protocol. Ca2+ release from a subpopulation of vesicles was found to be activated by micromolar Ca2+ and millimolar adenine nucleotides, and inhibited by millimolar Mg2+ and micromolar ruthenium red. 45Ca2+ release in the presence of 10 microM free Ca2+ gave a half-time for efflux of 20 ms. Addition of 5 mM ATP to 10 microM free Ca2+ increased efflux twofold (t1/2 = 10 ms). A high-conductance calcium-conducting channel was incorporated into planar lipid bilayers from the purified cardiac sarcoplasmic reticulum fractions. The channel displayed a unitary conductance of 75 +/- 3 pS in 53 mM trans Ca2+ and was selective for Ca2+ vs. Tris+ by a ratio of 8.74. The channel was dependent on cis Ca2+ for activity and was also stimulated by millimolar ATP. Micromolar ruthenium red and millimolar Mg2+ were inhibitory, and reduced open probability in single-channel recordings. These studies suggest that cardiac sarcoplasmic reticulum contains a high-conductance Ca2+ channel that releases Ca2+ with rates significant to excitation-contraction coupling.


Journal of Biological Chemistry | 2001

Calmodulin Binding and Inhibition of Cardiac Muscle Calcium Release Channel (Ryanodine Receptor)

David Balshaw; Le Xu; Naohiro Yamaguchi; Daniel A. Pasek; Gerhard Meissner

Metabolically 35S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [3H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca2+; in the presence of 100 μmCa2+, the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [35S]CaM molecules per RyR tetramer, both in the presence and absence of Ca2+. At least four CaM binding domains were identified in [35S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca2+ concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors.


Journal of Biological Chemistry | 2003

Characterization of Recombinant Skeletal Muscle (Ser-2843) and Cardiac Muscle (Ser-2809) Ryanodine Receptor Phosphorylation Mutants

Mirko Stange; Le Xu; David Balshaw; Naohiro Yamaguchi; Gerhard Meissner

Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.


Circulation Research | 1989

Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle.

Jeffrey S. Smith; Eric Rousseau; Gerhard Meissner

Sarcoplasmic reticulum (SR) contains a Ca2+-conducting channel that is believed to play a central role in excitation-contraction coupling by releasing the Ca2+ necessary for muscle contraction. The effects of calmodulin on single cardiac and skeletal muscle SR Ca2+-release channels were studied using the planar lipid bilayer-vesicle fusion technique. Calmodulin inhibited Ca2+-release channel opening by reducing the mean duration of single-channel open events without having an effect on single-channel conductance. Inhibition by calmodulin was dependent on Ca2+ concentration and occurred in the absence of ATP. The effects of calmodulin were reversed by mastoparan, a calmodulin-binding peptide. Two other calmodulin antagonists [calmidazolium and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide] modified the gating behavior of the channel in the absence of exogenous calmodulin in a concentration- and Ca2+-dependent manner. Our results suggest that calmodulin can modulate excitation-contraction coupling by directly interacting with the SR Ca2+-release channel of cardiac and skeletal muscle.


Journal of Biological Chemistry | 1997

Regulation of Skeletal Muscle Ca2+ Release Channel (Ryanodine Receptor) by Ca2+ and Monovalent Cations and Anions

Gerhard Meissner; Eduardo Ríos; Ashutosh Tripathy; Daniel A. Pasek

The effects of ionic composition and strength on rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) activity were investigated in vesicle-45Ca2+ flux, single channel and [3H]ryanodine binding measurements. In <0.01 μM Ca2+ media, the highest 45Ca2+ efflux rate was measured in 0.25 M choline-Cl medium followed by 0.25 M KCl, choline 4-morpholineethanesulfonic acid (Mes), potassium 1,4-piperazinediethanesulfonic acid (Pipes), and K-Mes medium. In all five media, the 45Ca2+ efflux rates were increased when the free [Ca2+] was raised from <0.01 μM to 20 μM and decreased as the free [Ca2+] was further increased to 1 mM. An increase in [KCl] augmented Ca2+-gated single channel activity and [3H]ryanodine binding. In [3H]ryanodine binding measurements, bell-shaped Ca2+ activation/inactivation curves were obtained in media containing different monovalent cations (Li+, Na+, K+, Cs+, and choline+) and anions (Cl−, Mes−, and Pipes−). In choline-Cl medium, substantial levels of [3H]ryanodine binding were observed at [Ca2+] <0.01 μM. Replacement of Cl− by Mes− or Pipes− reduced [3H]ryanodine binding levels at all [Ca2+]. In all media, the Ca2+-dependence of [3H]ryanodine binding could be well described assuming that the skeletal muscle ryanodine receptor possesses cooperatively interacting high-affinity Ca2+ activation and low-affinity Ca2+ inactivation sites. AMP primarily affected [3H]ryanodine binding by decreasing the apparent affinity of the Ca2+ inactivation site(s) for Ca2+, while caffeine increased the apparent affinity of the Ca2+ activation site for Ca2+. Competition studies indicated that ionic composition affected Ca2+-dependent receptor activity by at least three different mechanisms: (i) competitive binding of Mg2+ and monovalent cations to the Ca2+ activation sites, (ii) binding of divalent cations to the Ca2+ inactivation sites, and (iii) binding of anions to specific anion regulatory sites.


Biophysical Journal | 1998

Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+.

Le Xu; Gerhard Meissner

The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channels cytosolic Ca2+ activation and inactivation sites.

Collaboration


Dive into the Gerhard Meissner's collaboration.

Top Co-Authors

Avatar

Le Xu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Pasek

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashutosh Tripathy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric Rousseau

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Stamler

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nikolay V. Dokholyan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Asima Chakraborty

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge