Gerhard Seipke
Aventis Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerhard Seipke.
PLOS ONE | 2010
Mark Sommerfeld; Günter Müller; Georg Tschank; Gerhard Seipke; Paul Habermann; Roland Kurrle; Norbert Tennagels
Background Insulin glargine (Lantus®) is a long-acting basal insulin analog that demonstrates effective day-long glycemic control and a lower incidence of hypoglycemia than NPH insulin. After subcutaneous injection insulin glargine is partly converted into the two main metabolites M1 ([GlyA21]insulin) and M2 ([GlyA21,des-ThrB30]insulin). The aim of this study was to characterize the glargine metabolites in vitro with regard to their insulin receptor (IR) and IGF-1 receptor (IGF1R) binding and signaling properties as well as their metabolic and mitogenic activities. Methods The affinity of human insulin, insulin glargine and its metabolites to the IR isoforms A and B or IGF1R was analyzed in a competitive binding assay using SPA technology. Receptor autophosphorylation activities were studied via In-Cell Western in CHO and MEF cells overexpressing human IR-A and IR-B or IGF1R, respectively. The metabolic response of the insulins was studied as stimulation of lipid synthesis using primary rat adipocytes. Thymidine incorporation in Saos-2 cells was used to characterize the mitogenic activity. Conclusions The binding of insulin glargine and its metabolites M1 and M2 to the IR were similar and correlated well with their corresponding autophosphorylation and metabolic activities in vitro. No differences were found towards the two IR isoforms A or B. Insulin glargine showed a higher affinity for IGF1R than insulin, resulting in a lower EC50 value for autophosphorylation of the receptor and a more potent stimulation of thymidine incorporation in Saos-2 cells. In contrast, the metabolites M1 and M2 were significantly less active in binding to and activation of the IGF1R and their mitogenicity in Saos-2 cells was equal to human insulin. These findings strongly support the idea that insulin glargine metabolites contribute with the same potency as insulin glargine to blood glucose control but lead to significantly reduced growth-promoting activity.
Biochemical and Biophysical Research Communications | 2003
Irini Rakatzi; Gerhard Seipke; Jürgen Eckel
Insulin receptor substrate (IRS)-2 has been implicated in the promotion of beta-cell survival. Here we tested the hypothesis that the novel analog [LysB3, GluB29] insulin (insulin glulisine, IG) might mediate an enhanced beta-cell protective effect due to its unique property of preferential IRS-2 phosphorylation. We assessed IRS activation by IG and its anti-apoptotic activity against cytokines or palmitic acid in comparison to insulin, insulin analogs, and insulin-like growth factor (IGF)-I using INS-1 cells. IG induced a prominent IRS-2 activation without significant IRS-1 stimulation. The marked cytokine- and fatty acid-induced apoptosis was strongly (55-60%) inhibited by IG both at the level of caspase 3 activation and nucleosomal release, with only 15% inhibition of apoptosis by regular insulin. At 1nM, insulin, insulin aspart, and insulin lispro were much less effective compared to IG. In conclusion, the prominent anti-apoptotic activity of insulin glulisine might serve to counteract autoimmune- and lipotoxicity-induced beta-cell destruction.
International Journal of Toxicology | 2006
Ingo Stammberger; Gerhard Seipke; Thomas Bartels
Receptor binding and signaling and the mitogenic potential of insulin glulisine (glulisine), regular human insulin (RHI), and Asp(B10) were compared in vivo and in vitro. Insulin and insulin-like growth factor 1 (IGF-1) receptor binding was studied with human insulin receptors (293HEK cells) and the human osteosarcoma-derived cell line B10. Insulin receptor–mediated signaling was assessed in rat-1 fibroblasts overexpressing insulin receptors. Activation of insulin receptor substrates 1 and 2 (IRS-1/IRS-2) was studied in rat and human myoblasts and rat cardiomyocytes. DNA synthesis induction was assessed by [3H] thymidine incorporation in the human epithelial breast cell line MCF10. Interaction with the IGF-1 receptor, DNA synthesis, and intracellular signal transduction were assessed in cardiac K6 myoblasts. Immunohistochemical examination of Sprague-Dawley rat tissue treated with glulisine for 6 months (n = 40), and glulisine and RHI for 12 months (n = 60), was performed. Steady-state insulin receptor binding affinity was slightly lower for glulisine versus RHI (~0.70). IGF-1 receptor binding affinity was lower (four-to fivefold) for glulisine, but significantly higher (four-fold) for Asp(B10) versus RHI. Glulisine, Asp(B10), and RHI showed similar insulin receptor–association kinetics; however, Asp(B10) revealed increased insulin receptor affinity. Glulisine and RHI showed similar insulin receptor–mediated phosphorylation and IRS-2 activation. Activation of IRS-1 was 6- to 10-fold lower with glulisine; glulisine was less potent and Asp(B10) slightly more potent in stimulating DNA synthesis versus RHI. Stimulation of DNA synthesis was comparable for glulisine and RHI in K6 myoblasts. At 12 months, there was no significant difference between glulisine and RHI in proliferative activity. This preclinical evaluation suggests that structural changes in glulisine versus RHI are not associated with any safety issues.
Archive | 1998
Johann Ertl; Paul Habermann; Karl Geisen; Gerhard Seipke
Diabetes | 2003
Irini Rakatzi; Stefanie Ramrath; Daniela Ledwig; Olaf Dransfeld; Thomas Bartels; Gerhard Seipke; Jiirgen Eckel
Archive | 2009
Paul Habermann; Gerhard Seipke; Roland Kurrle; Günter Müller; Mark Sommerfeld; Norbert Tennagels; Georg Tschank; Ulrich Werner
Archive | 1995
Michael Dr. Dörschug; Paul Habermann; Gerhard Seipke; Eugen Uhlmann
Archive | 1989
Michael Dr. Dörschug; Paul Habermann; Gerhard Seipke; Eugen Uhlmann
Archive | 1997
Johann Ertl; Paul Habermann; Karl Geisen; Gerhard Seipke
Archive | 1998
Johann Ertl; Karl Geisen; Paul Habermann; Gerhard Seipke