Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhard Sommer is active.

Publication


Featured researches published by Gerhard Sommer.


Journal of Biomechanical Engineering-transactions of The Asme | 2004

Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques

Gerhard A. Holzapfel; Gerhard Sommer; Peter Regitnig

Knowledge of the biomechanical properties of human atherosclerotic plaques is of essential importance for developing more insights in the pathophysiology of the cardiovascular system and for better predicting the outcome of interventional treatments such as balloon angioplasty. Available data are mainly based on uniaxial tests, and most of the studies investigate the mechanical response of fibrous plaque caps only. However, stress distributions during, for example, balloon angioplasty are strongly influenced by all components of atherosclerotic lesions. A total number of 107 samples from nine human high-grade stenotic iliac arteries were tested; associated anamnesis of donors reported. Magnetic resonance imaging was employed to test the usability of the harvested arteries. Histological analyses has served to characterize the different tissue types. Prepared strips of 7 different tissue types underwent cyclic quasistatic uniaxial tension tests in axial and circumferential directions; ultimate tensile stresses and stretches were documented. Experimental data of individual samples indicated anisotropic and highly nonlinear tissue properties as well as considerable interspecimen differences. The calcification showed, however a linear property, with about the same stiffness as observed for the adventitia in high stress regions. The stress and stretch values at calcification fracture are smaller (179 +/- 56 kPa and 1.02 +/- 0.005) than for each of the other tissue components. Of all intimal tissues investigated, the lowest fracture stress occurred in the circumferential direction of the fibrous cap (254.8 +/- 79.8 kPa at stretch 1.182 +/- 0.1). The adventitia demonstrated the highest and the nondiseased media the lowest mechanical strength on average.


Journal of The Mechanical Behavior of Biomedical Materials | 2010

On modelling and analysis of healthy and pathological human mitral valves: Two case studies

Victorien Emile Prot; Bjørn Skallerud; Gerhard Sommer; Gerhard A. Holzapfel

Biomechanical data and related constitutive modelling of the mitral apparatus served as a basis for finite element analyses to better understand the physiology of mitral valves in health and disease. Human anterior and posterior leaflets and chordae tendinae from an elderly heart showing no disease and a hypertrophic obstructive cardiomyopathic heart (HOCM) were mechanically tested by means of uniaxial cyclic extension tests under quasi-static conditions. Experimental data for the leaflets and the chordae tendinae showed highly nonlinear mechanical behaviours and the leaflets were anisotropic. The mitral valve from the HOCM heart exhibited a significantly softer behaviour than the valve from the healthy one. A comparison with porcine data was included because many previous mitral modelling studies have been based on porcine data. Some differences in mechanical response were observed. Material parameters for hyperelastic, transversely isotropic constitutive laws were determined. The experimental data and the related model parameters were used in two finite element studies to investigate the effects of the material properties on the mitral valve response during systole. The analyses showed that during systole the mitral valve from the HOCM heart bulged into the left atrium by taking on the shape of a balloon, whereas the anterior leaflet of the healthy valve remained in the left ventricle.


Acta Biomaterialia | 2015

Biomechanical properties and microstructure of human ventricular myocardium

Gerhard Sommer; Andreas J. Schriefl; Michaela Andrä; Michael Sacherer; Christian Viertler; Heimo Wolinski; Gerhard A. Holzapfel

UNLABELLED In the multidisciplinary field of heart research it is of utmost importance to identify accurate myocardium material properties for the description of phenomena such as mechano-electric feedback or heart wall thickening. A rationally-based material model is required to understand the highly nonlinear mechanics of complex structures such as the passive myocardium under different loading conditions. Unfortunately, to date there are no experimental data of human heart tissues available to estimate material parameters and to develop adequate material models. This study aimed to determine biaxial extension and triaxial shear properties and the underlying microstructure of the passive human ventricular myocardium. Using new state-of-the-art equipment, planar biaxial extension tests were performed to determine the biaxial extension properties of the passive ventricular human myocardium. Shear properties of the myocardium were examined by triaxial simple shear tests performed on small cubic specimens excised from an adjacent region of the biaxial extension specimens. The three-dimensional microstructure was investigated through second-harmonic generation (SHG) microscopy on optically cleared tissues, which emphasized the 3D orientation and dispersion of the myofibers and adjacent collagen fabrics. The results suggest that the passive human LV myocardium under quasi-static and dynamic multiaxial loadings is a nonlinear, anisotropic (orthotropic), viscoelastic and history-dependent soft biological material undergoing large deformations. Material properties of the tissue components along local microstructural axes drive the nonlinear and orthotropic features of the myocardium. SHG microscopy investigation revealed detailed information about the myocardial microstructure due to its high resolution. It enabled the identification of structural parameters such as the fiber and the sheet orientations and corresponding dispersions. With this complete set of material data, a sophisticated material model and associated material parameters can be defined for a better description of the biomechanical response of the ventricular myocardium in humans. Such a model will lead to more accurate computational simulations to better understand the fundamental underlying ventricular mechanics, a step needed in the improvement of medical treatment of heart diseases. STATEMENT OF SIGNIFICANCE Unfortunately, to date there are no experimental data of human heart tissues available for material parameter estimation and the development of adequate material models. In this manuscript novel biaxial tensile and shear test data at different specimen orientations are presented, which allowed to adequately capture the direction-dependent material response. With these complete sets of mechanical data, combined with their underlying microstructural data (also presented herein), sophisticated material models and associated material parameters can be defined for the description of the mechanical behavior of the ventricular myocardium in humans. Such models will lead to accurate computational simulations to better understand the fundamental underlying ventricular mechanics, a step needed in the improvement of medical treatment of heart diseases.


Acta Biomaterialia | 2017

Mechanical characterization of human brain tissue

Silvia Budday; Gerhard Sommer; C. Birkl; C. Langkammer; J. Haybaeck; J. Kohnert; M. Bauer; F. Paulsen; Paul Steinmann; Ellen Kuhl; Gerhard A. Holzapfel

Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed compression but not tension. Our results demonstrate that material parameters identified for a single loading mode fail to predict the response under arbitrary loading conditions. Our systematic characterization of human brain tissue will lead to more accurate computational simulations, which will allow us to determine criteria for injury, to develop smart protection systems, and to predict brain development and disease progression. STATEMENT OF SIGNIFICANCE There is a pressing need to characterize the mechanical behavior of human brain tissue under multiple loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We perform a sequence of experimental tests on the same brain specimen to characterize the regional and directional behavior, and we supplement our tests with DTI and histology to explore to which extent the macrostructural response is a result of the underlying microstructure. Results demonstrate that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry, and we show that the multiaxial data can best be captured by a modified version of the one-term Ogden model.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Arterial clamping: finite element simulation and in vivo validation.

Nele Famaey; Gerhard Sommer; Jos Vander Sloten; Gerhard A. Holzapfel

Commonly used techniques in cardiovascular interventions such as arterial clamping always entail a certain degree of unavoidable iatrogenic tissue damage. Therefore, studies have been directed towards the decrease of undesired intraoperative trauma, for example, through the design of less traumatic surgical instruments. Obviously, the effectiveness of new clamp designs and techniques depends on how well damage mechanisms are understood and how accurate thresholds for safe tissue loading can be set. This information can in part be derived from reliable finite element simulations. This study is the first to describe a finite element simulation of the clamping of a rat abdominal aorta with occlusion and in vivo validation. Material nonlinearity, large deformations, contact interactions and residual strains are hereby taken into account. The mechanical parameters of the model are derived from inflation experiments. The effect of the residual strains, different clamp geometries as well as the effect of variations in material properties are studied. In all simulations, stress concentrations in different regions of the tissue are noticed, especially for a corrugated clamp design. This shows the importance of finite element modeling in understanding the relation between mechanical loading and damage mechanisms. The inclusion of residual strains has its effect not only in the physiological loading regime, but also during clamping. Just as in the physiologic regime, it lowers the stress gradients through the wall thickness. Varying the material properties with the measured standard deviation between specimens leads to an average change of ±17% in the maximum and minimum principal stresses. Finally, the model is validated with an in vivo clamping experiment on a Wistar rat in which the clamping force was measured, showing good correspondence with the modeled clamping force.


Acta Biomaterialia | 2013

Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery.

Gerhard Sommer; Maximilian Eder; Laszlo Kovacs; Heramb Pathak; Lars Bonitz; Christoph Mueller; Peter Regitnig; Gerhard A. Holzapfel

A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeons planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the materials collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery.


Journal of Synchrotron Radiation | 2005

In situ tensile testing of human aortas by time- resolved small-angle X-ray scattering

F. Schmid; Gerhard Sommer; M. Rappolt; Christian A. J. Schulze-Bauer; Peter Regitnig; Gerhard A. Holzapfel; Peter Laggner; Heinz Amenitsch

The collagen diffraction patterns of human aortas under uniaxial tensile test conditions have been investigated by synchrotron small-angle X-ray scattering. Using a recently designed tensile testing device the orientation and d-spacing of the collagen fibers in the adventitial layer have been measured in situ with the macroscopic force and sample stretching under physiological conditions. The results show a direct relation between the orientation and extension of the collagen fibers on the nanoscopic level and the macroscopic stress and strain. This is attributed first to a straightening, second to a reorientation of the collagen fibers, and third to an uptake of the increasing loads by the collagen fibers.


Acta Biomaterialia | 2013

Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

Gerhard Sommer; Andreas J. Schriefl; Georg Zeindlinger; Andreas Katzensteiner; Herwig Ainödhofer; Amulya K. Saxena; Gerhard A. Holzapfel

Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications.


Journal of the Royal Society Interface | 2016

Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling

Justyna A. Niestrawska; Christian Viertler; Peter Regitnig; T. Cohnert; Gerhard Sommer; Gerhard A. Holzapfel

Soft biological tissues such as aortic walls can be viewed as fibrous composites assembled by a ground matrix and embedded families of collagen fibres. Changes in the structural components of aortic walls such as the ground matrix and the embedded families of collagen fibres have been shown to play a significant role in the pathogenesis of aortic degeneration. Hence, there is a need to develop a deeper understanding of the microstructure and the related mechanics of aortic walls. In this study, tissue samples from 17 human abdominal aortas (AA) and from 11 abdominal aortic aneurysms (AAA) are systematically analysed and compared with respect to their structural and mechanical differences. The collagen microstructure is examined by analysing data from second-harmonic generation imaging after optical clearing. Samples from the intact AA wall, their individual layers and the AAA wall are mechanically investigated using biaxial stretching tests. A bivariate von Mises distribution was used to represent the continuous fibre dispersion throughout the entire thickness, and to provide two independent dispersion parameters to be used in a recently proposed material model. Remarkable differences were found between healthy and diseased tissues. The out-of-plane dispersion was significantly higher in AAA when compared with AA tissues, and with the exception of one AAA sample, the characteristic wall structure, as visible in healthy AAs with three distinct layers, could not be identified in AAA samples. The collagen fibres in the abluminal layer of AAAs lost their waviness and exhibited rather straight and thick struts of collagen. A novel set of three structural and three material parameters is provided. With the structural parameters fixed, the material model was fitted to the mechanical experimental data, giving a very satisfying fit although there are only three material parameters involved. The results highlight the need to incorporate the structural differences into finite-element simulations as otherwise simulations of AAA tissues might not be good predictors for the actual in vivo stress state.


Annals of Biomedical Engineering | 2015

Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium

Gerhard Sommer; Daniel Ch. Haspinger; Michaela Andrä; Michael Sacherer; Christian Viertler; Peter Regitnig; Gerhard A. Holzapfel

One goal of cardiac research is to perform numerical simulations to describe/reproduce the mechanoelectrical function of the human myocardium in health and disease. Such simulations are based on a complex combination of mathematical models describing the passive mechanical behavior of the myocardium and its electrophysiology, i.e., the activation of cardiac muscle cells. The problem in developing adequate constitutive models is the shortage of experimental data suitable for detailed parameter estimation in specific functional forms. A combination of shear and biaxial extension tests with different loading protocols on different specimen orientations is necessary to capture adequately the direction-dependent (orthotropic) response of the myocardium. In most experimental animal studies, where planar biaxial extension tests on the myocardium have been conducted, the generated shear stresses were neither considered nor discussed. Hence, in this study a method is presented which allows the quantification of shear deformations and related stresses. It demonstrates an approach for experimenters as to how the generation of these shear stresses can be minimized during mechanical testing. Experimental results on 14 passive human myocardial specimens, obtained from nine human hearts, show the efficiency of this newly developed method. Moreover, the influence of the clamping technique of the specimen, i.e., the load transmission between the testing device and the tissue, on the stress response is determined by testing an isotropic material (Latex). We identified that the force transmission between the testing device and the specimen by means of hooks and cords does not influence the performed experiments. We further showed that in-plane shear stresses definitely exist in biaxially tested human ventricular myocardium, but can be reduced to a minimum by preparing the specimens in an appropriate manner. Moreover, we showed whether shear stresses can be neglected when performing planar biaxial extension tests on fiber-reinforced materials. The used method appears to be robust to quantify normal and shear deformations and corresponding stresses in biaxially tested human myocardium. This method can be applied for the mechanical characterization of any fiber-reinforced material using planar biaxial extension tests.

Collaboration


Dive into the Gerhard Sommer's collaboration.

Top Co-Authors

Avatar

Gerhard A. Holzapfel

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Regitnig

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Andreas J. Schriefl

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Steinmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Silvia Budday

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Schmid

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Heinz Amenitsch

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge