Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerhild Lüder is active.

Publication


Featured researches published by Gerhild Lüder.


Journal of Molecular Biology | 1992

Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6: The products of gene 1 and gene 2 are required for pac cleavage

Sunghee Chai; Alicia Bravo; Gerhild Lüder; Alexandra Nedlin; Thomas A. Trautner; Juan C. Alonso

Packaging of Bacillus subtilis phage SPP1 DNA into viral capsids is initiated at a specific DNA site termed pac. Using an in vivo assay for pac cleavage, we show that initiation of DNA synthesis and DNA packaging are uncoupled. When the DNA products of pac cleavage were analyzed, we could detect the pac end that was destined to be packaged, but we failed to detect the other end of the cleavage reaction. SPP1 conditional lethal mutants, which map adjacent to pac, were analyzed with our assay. This revealed that the products of gene 1 and gene 2 are essential for pac cleavage. SPP1 mutants that are affected in the genes necessary for viral capsid formation (gene 41) or involved in headful cleavage (gene 6) remain proficient in pac site cleavage. Analysis of the nucleotide sequence (2.769 x 10(3) base-pairs) of the region of the genes required for pac cleavage revealed five presumptive genes. We have assigned gene 1 and gene 2 to two of these open reading frames (orf), giving the gene order gene 1-gene 2-orf 3-orf 4-orf 5. The direction of transcription of the gene 1 to orf 5 operon and the length of the mRNAs was determined. We have identified, upstream from gene 1, the major transcriptional start point (P1). Transcription originating from P1 requires a phage-encoded factor for activity. The organization of gene 1 and gene 2 of SPP1 resembles the organization of genes in the pac/cos region of different Escherichia coli double-stranded DNA phages. We propose that the conserved gene organization is representative of the packaging machinery of a primordial packaging system.


Journal of Molecular Biology | 2003

PspGI, a Type II Restriction Endonuclease from the Extreme Thermophile Pyrococcus sp.: Structural and Functional Studies to Investigate an Evolutionary Relationship with Several Mesophilic Restriction Enzymes

Vera Pingoud; Charlotte Conzelmann; Steffen Kinzebach; Anna Sudina; Valerie Metelev; E. A. Kubareva; Janusz M. Bujnicki; Rudi Lurz; Gerhild Lüder; Shuang-yong Xu; Alfred Pingoud

We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.


Journal of Molecular Biology | 1994

Analysis of Cis and Trans acting elements required for the initiation of DNA replication in the Bacillus subtilis bacteriophage SPP 1

Xiomara Pedré; Frank Weise; Sunghee Chai; Gerhild Lüder; Juan C. Alonso

The development of SPP1 has been studied in several B. subtilis mutants conditionally defective in initiation of DNA replication. Initiation of SPP1 replication is independent of the host DnaA (replisome organizer), DnaB, DnaC and DnaI products, but requires the DnaG (DNA primase) and the DNA gyrase. Furthermore, SPP1 replication is independent of the DnaK (heat shock) protein. The phage-encoded products required for initiation of SPP1 replication have been genetically characterized. Analysis of the nucleotide sequence (3.292 kilobases) of the region where SPP1 initiation replication mutants map, revealed five open reading frames (orf). We have assigned genes 38, 39 and 40 to three of these orfs, which have the successive order gene 38-gene 39-orf39,1-gene 40-orf41. The direction of transcription of the reading frames, the lengths of the mRNAs as well as the transcription start point, upstream of gene 38 (PE2), were identified. Proteins of 29.9, 14.6 and 46.6 kDa were anticipated from translation of gene 38, gene 39 and gene 40, respectively. The purified G38P and G39P have estimated molecular masses of 31 and 15 kDa. G38P and G39P do not share significant identity with primary protein sequences currently available in protein databases, whereas G40P shares substantial homology with a family of DNA primase-associated DNA helicases. G38P binds specifically to two discrete SPP1 DNA restriction fragments (EcoRI-4 and EcoRI-3). The G38P binding site on EcoRI-4 was localized on a 393 bp DNA segment, which lies within the coding sequence of gene 38. The putative binding site on EcoRI-3 was inferred by DNA sequence homology, it maps in a non-coding segment. G39P, which does not bind to DNA, is able to form a complex with G38P. The organization of the SPP1 genes in the gene 38 to gene 40 interval resembles that one found in the replication origin regions of different Escherichia coli double-stranded DNA phages (lambda, phi 80 and P22). We propose that the conserved gene organization is representative of the replication origin region of a primordial phage.


Molecular Genetics and Genomics | 1993

Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination

Juan C. Alonso; Asita C. Stiege; Gerhild Lüder

A recN− (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF recH and addAB genes, when present in an otherwise Rec+B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 102- to 104-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for, DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.


Genes & Development | 2009

Retention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responder

Nathalie Véron; Hermann Bauer; Andrea Y. Weiße; Gerhild Lüder; Martin Werber; Bernhard G. Herrmann

The t complex responder (Tcr) encoded by the mouse t haplotype is able to cause phenotypic differences between t and + sperm derived from t/+ males, leading to non-Mendelian inheritance. This capability of Tcr contradicts the concept of phenotypic equivalence proposed for sperm cells, which develop in a syncytium and actively share gene products. By analyzing a Tcr minigene in hemizygous transgenic mice, we show that Tcr gene products are post-meiotically expressed and are retained in the haploid sperm cells. The wild-type allele of Tcr, sperm motility kinase-1 (Smok1), behaves in the same manner, suggesting that Tcr/Smok reveal a common mechanism prone to evolve non-Mendelian inheritance in mammals.


Molecular Genetics and Genomics | 1990

Genetic analysis ofrec E activities inBacillus subtilis

Piotr Ceglowski; Gerhild Lüder; Juan C. Alonso

SummaryArecE mutant (recE6) ofBacillus subtilis was constructed by insertion of a selectable marker into therecE coding region. The insertional inactivation of therecE gene renders cells very sensitive to DNA damaging agents and severely impairs intermolecular recombination, but does not markedly affect plasmid interstrand annealing and intramolecular recombination. TherecE6 allele was then introduced into a set of DNA repair-deficient strains ofB. subtilis. The removal of DNA damage by therecF,addAaddB,recH,recL andrecP gene products is strictly dependent on an activerecE gene product (recE-dependent pathway). On the other hand, the increased sensitization to purine adducts in theuvrA42recE6 andpolA5recE6 strains suggests that such lethal lesions may be removed either by therecE-dependent or by therecE-independent pathway.


Gene | 1993

Sequence analysis of the left end of the Bacillus subtilis bacteriophage SPP1 genome.

Sunghee Chai; Uwe Szepan; Gerhild Lüder; Thomas A. Trautner; Juan C. Alonso

The left end of the genome of Bacillus subtilis bacteriophage SPP1 is represented by EcoRI DNA fragments 12 and 1 (EcoRI-12 and EcoRI-1). A number of different deletions were identified in EcoRI-1. A detailed physical and genetic map of EcoRI-1 from wild-type (wt) phage and SPP1 deletion mutants was constructed. Genes encoding essential products involved in late and early stages of phage DNA metabolism were mapped at the left and right ends of the 8.5-kb EcoRI-1, respectively. Deletions fell within the internal 5157-bp DNA segment of EcoRI-1. The nucleotide (nt) sequence of this region and of the endpoints of two deletions, delta X and delta L, were determined. The nt sequence of the junctions in SPP1 delta X and SPP1 delta L showed that, in these deletions, a segment of DNA between short directly repeated sequences of 10 and 13 bp, located 3427 and 4562 bp apart in the wt sequence, had been eliminated. In both cases, the copy of the repeated sequence was retained in the deletion mutant, consistent with the hypothesis that the deletions originated by homologous intramolecular recombination. The corresponding region in wt phage had fifteen presumptive open reading frames (orfs) and the previously identified SPP1 early promoters (PE1). The poor growth phenotype associated with the SPP1 deletion mutants was attributed to premature transcriptional read through from promoter(s) of the early region into late operon brought into close vicinity of the late genes due to the deletion event.


Molecular Genetics and Genomics | 1992

Intramolecular homologous recombination in Bacillus subtilis 168

Juan C. Alonso; Gerhild Lüder; Thomas A. Trautner

SummaryPlasmid resolution from a phage:: plasmid chimera was used to measure directly intramolecular recombination in Bacillus subtilis. The system is based on a sigma-replicating plasmid (pC194) cloned into a dispensable region of the lytic bacteriophage SPP1. The plasmid, which confers chloramphenicol resistance, is resolved when SPP1:: pC194 phages infect B. subtilis cells, provided the chimera carries a functional, intact copy of the plasmid repH gene. Intramolecular homologous recombination was independent of the RecA and RecL-RecR functions, but dependent on RecF, RecB, RecG, RecF, RecH and AddAB functions. These results are consistent with the hypothesis that B. subtilis has multiple pathways for genetic recombination and allow us to tentatively place the recB and recG genes into a new epistatic group ɛ.


Molecular Genetics and Genomics | 1977

On the dose response in B. subtilis transfection

H. Hirokawa; Thomas A. Trautner; Gerhild Lüder

SummaryTransfection with ϕ29 DNA is predominantly caused by multimolecular, protease-sensitive aggregates of DNA. A minority of transfecting DNA molecules having properties of unit-length ϕ29 genome molecules show a quadratic dose response in transfection.


Nucleic Acids Research | 2001

An architectural role of the Escherichia coli chromatin protein FIS in organising DNA

Robert J. Schneider; Rudolf Lurz; Gerhild Lüder; Carolin Tolksdorf; Andrew Travers; Georgi Muskhelishvili

Collaboration


Dive into the Gerhild Lüder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge