Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerlinde Obermoser is active.

Publication


Featured researches published by Gerlinde Obermoser.


Science Translational Medicine | 2013

Induction of ICOS+CXCR3+CXCR5+ TH Cells Correlates with Antibody Responses to Influenza Vaccination

Salah Eddine Bentebibel; Santiago M. C. Lopez; Gerlinde Obermoser; Nathalie Schmitt; Cynthia Mueller; Carson Harrod; Emilio Flano; Asuncion Mejias; Randy A. Albrecht; Derek Blankenship; Hui Xu; Virginia Pascual; Jacques Banchereau; Adolfo García-Sastre; Anna Karolina Palucka; Octavio Ramilo; Hideki Ueno

A T cell subset that emerges in blood after seasonal influenza vaccinations correlates with the development of protective antibody responses. What Lies Beneath Although the seasonal flu vaccine, which can protect 60 to 90% of young healthy adults, has been in use for decades, we still know surprisingly little about how it actually induces protective antibody responses. This information is especially important to improve vaccination efficacy in populations that are more susceptible to infection such as the very young and the elderly. Now, Bentebibel et al. take us a step further into understanding what is required for protective antibody responses in humans. The authors identified a subset of CD4+ T cells that were associated with protective antibody responses after seasonal flu vaccination in humans. These cells expressed the costimulatory molecules ICOS as well as two chemokine receptors, CXCR3 and CXCR5, which identify these cells as circulating memory T follicular helper (TFH) cells. TFH cells traditionally are thought to reside in the B cell follicles and be instrumental for germinal center formation and subsequent memory antibody response. Indeed, these circulating cells were influenza antigen–specific, could induce memory B cells to differentiate into plasma cells, and correlated with specific antibody titer. Further studies that find ways to harness these cells could thus improve vaccine design. Seasonal influenza vaccine protects 60 to 90% of healthy young adults from influenza infection. The immunological events that lead to the induction of protective antibody responses remain poorly understood in humans. We identified the type of CD4+ T cells associated with protective antibody responses after seasonal influenza vaccinations. The administration of trivalent split-virus influenza vaccines induced a temporary increase of CD4+ T cells expressing ICOS, which peaked at day 7, as did plasmablasts. The induction of ICOS was largely restricted to CD4+ T cells coexpressing the chemokine receptors CXCR3 and CXCR5, a subpopulation of circulating memory T follicular helper cells. Up to 60% of these ICOS+CXCR3+CXCR5+CD4+ T cells were specific for influenza antigens and expressed interleukin-2 (IL-2), IL-10, IL-21, and interferon-γ upon antigen stimulation. The increase of ICOS+CXCR3+CXCR5+CD4+ T cells in blood correlated with the increase of preexisting antibody titers, but not with the induction of primary antibody responses. Consistently, purified ICOS+CXCR3+CXCR5+CD4+ T cells efficiently induced memory B cells, but not naïve B cells, to differentiate into plasma cells that produce influenza-specific antibodies ex vivo. Thus, the emergence of blood ICOS+CXCR3+CXCR5+CD4+ T cells correlates with the development of protective antibody responses generated by memory B cells upon seasonal influenza vaccination.


Immunity | 2013

Systems Scale Interactive Exploration Reveals Quantitative and Qualitative Differences in Response to Influenza and Pneumococcal Vaccines

Gerlinde Obermoser; Scott R. Presnell; Kelly Domico; Hui Xu; Yuanyuan Wang; Esperanza Anguiano; LuAnn Thompson-Snipes; Rajaram Ranganathan; Brad Zeitner; Anna Bjork; David Anderson; Cate Speake; Emily Ruchaud; Jason A. Skinner; Laia Alsina; Mamta Sharma; Hélène Dutartre; Alma Martina Cepika; Elisabeth Israelsson; Phuong Nguyen; Quynh Anh Nguyen; A. Carson Harrod; Sandra Zurawski; Virginia Pascual; Hideki Ueno; Gerald T. Nepom; Charlie Quinn; Derek Blankenship; Karolina Palucka; Jacques Banchereau

Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.


Journal of Virology | 2013

H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice

Irina Margine; Rong Hai; Randy A. Albrecht; Gerlinde Obermoser; A. C. Harrod; Jacques Banchereau; Karolina Palucka; Adolfo García-Sastre; Peter Palese; John J. Treanor; Florian Krammer

ABSTRACT Broadly neutralizing antibodies directed against the conserved stalk domain of the viral hemagglutinin have attracted increasing attention in recent years. However, only a limited number of stalk antibodies directed against group 2 influenza hemagglutinins have been isolated so far. Also, little is known about the general level of induction of these antibodies by influenza virus vaccination or infection. To characterize the anti-stalk humoral response in the mouse model as well as in humans, chimeric hemagglutinin constructs previously developed in our group were employed in serological assays. Whereas influenza virus infection induced high titers of stalk-reactive antibodies, immunization with inactivated influenza virus vaccines failed to do so in the mouse model. Analysis of serum samples collected from human individuals who were infected by influenza viruses also revealed the induction of stalk-reactive antibodies. Finally, we show that the hemagglutinin stalk-directed antibodies induced in mice and humans have broad reactivity and neutralizing activity in vitro and in vivo. The results of the study point toward the existence of highly conserved epitopes in the stalk domains of group 2 hemagglutinins, which can be targeted for the development of a universal influenza virus vaccine in humans.


Scientific Reports | 2016

Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium

Greg Finak; Marc Langweiler; Maria Jaimes; Mehrnoush Malek; Jafar Taghiyar; Yael Korin; Lesley Devine; Gerlinde Obermoser; Marcin L. Pekalski; Nikolas Pontikos; Alain Diaz; Susanne Heck; Federica Villanova; Nadia Terrazzini; Florian Kern; Yu Qian; Rick Stanton; Kui Wang; Aaron Brandes; John Ramey; Nima Aghaeepour; Tim R. Mosmann; Richard H. Scheuermann; Elaine F. Reed; Karolina Palucka; Virginia Pascual; Bonnie B. Blomberg; Frank O. Nestle; Robert B. Nussenblatt; Ryan R. Brinkman

Standardization of immunophenotyping requires careful attention to reagents, sample handling, instrument setup, and data analysis, and is essential for successful cross-study and cross-center comparison of data. Experts developed five standardized, eight-color panels for identification of major immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories using these panels with standardized operating procedures (SOPs). Manual gating was performed by each site and by a central site. Automated gating algorithms were developed and tested by the FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought to determine whether automated methods could streamline and standardize the analysis. Within-site variability was low in all experiments, but cross-site variability was lower when central analysis was performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets than those based on dim markers and for rare populations. Automated gating was able to match the performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable variability. Standardized staining, data collection, and automated gating can increase power, reduce variability, and streamline analysis for immunophenotyping.


Nature Communications | 2014

Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines

Romain Banchereau; Nicole Baldwin; Alma Martina Cepika; Shruti Athale; Yaming Xue; Chun I. Yu; Patrick Metang; Abhilasha Cheruku; Isabelle Berthier; Ingrid Gayet; Yuanyuan Wang; Marina Ohouo; Lu Ann Snipes; Hui Xu; Gerlinde Obermoser; Derek Blankenship; Sangkon Oh; Octavio Ramilo; Damien Chaussabel; Jacques Banchereau; Karolina Palucka; Virginia Pascual

The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.


Cell | 2016

Erratum: Personalized immunomonitoring uncovers molecular networks that stratify lupus patients ((Cell (2016) 165 (551-565))

Romain Banchereau; Seunghee Hong; Brandi L. Cantarel; Nicole Baldwin; Jeanine Baisch; Michelle Edens; Alma Martina Cepika; Peter Acs; Jacob Turner; Esperanza Anguiano; Parvathi Vinod; Shaheen Khan; Gerlinde Obermoser; Derek Blankenship; Edward K. Wakeland; Lorien Nassi; Alisa Gotte; Marilynn Punaro; Yong-Jun Liu; Jacques Banchereau; Jose Rossello-Urgell; Tracey Wright; Virginia Pascual

Romain Banchereau, Seunghee Hong, Brandi Cantarel, Nicole Baldwin, Jeanine Baisch, Michelle Edens, Alma-Martina Cepika, Peter Acs, Jacob Turner, Esperanza Anguiano, Parvathi Vinod, Shaheen Khan, Gerlinde Obermoser, Derek Blankenship, Edward Wakeland, Lorien Nassi, Alisa Gotte, Marilynn Punaro, Yong-Jun Liu, Jacques Banchereau, Jose Rossello-Urgell, Tracey Wright, and Virginia Pascual* *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cell.2016.05.057


Scientific Reports | 2016

ICOS(+)PD-1(+)CXCR3(+) T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination.

Salah Eddine Bentebibel; Surender Khurana; Nathalie Schmitt; Parvathi Kurup; Cynthia Mueller; Gerlinde Obermoser; A. Karolina Palucka; Randy A. Albrecht; Adolfo García-Sastre; Hana Golding; Hideki Ueno

The immune mechanism leading to the generation of protective antibody responses following influenza trivalent inactivated vaccine (TIV) vaccinations remains largely uncharacterized. We recently reported that TIV vaccination induced a transient increase of circulating ICOS+PD-1+CXCR3+ T follicular helper (cTfh) cells in blood, which positively correlated with the induction of protective antibody responses measured at day 28. However, whether and how these T cells directly contribute to antibody response remains unclear. In this study, we analyzed the changes after TIV vaccination in the amount and the avidity of the polyclonal antibodies specific for the HA1 subunit of the pandemic H1N1 virus, and analyzed the correlation with the increase of ICOS+PD-1+CXCR3+ cTfh cells. We found that both the amount and the avidity of specific antibodies rapidly increased during the first 7 days after TIV. Importantly, the increase of ICOS+PD-1+CXCR3+ cTfh cells strongly correlated with the increase in the avidity of antibodies, particularly in subjects who did not have high affinity antibodies at baseline. We propose that ICOS+PD-1+CXCR3+ Tfh cells directly contribute to the generation of high-avidity antibodies after TIV vaccinations by selectively interacting with high affinity B cells at extrafollicular sites.


The Journal of Infectious Diseases | 2014

Differences in Antibody Responses Between Trivalent Inactivated Influenza Vaccine and Live Attenuated Influenza Vaccine Correlate With the Kinetics and Magnitude of Interferon Signaling in Children

Raquel Giacomelli Cao; Nicolás M. Suárez; Gerlinde Obermoser; Santiago M. C. Lopez; Emilio Flaño; Sara E. Mertz; Randy A. Albrecht; Adolfo García-Sastre; Asuncion Mejias; Hui Xu; Huanying Qin; Derek Blankenship; Karolina Palucka; Virginia Pascual; Octavio Ramilo

BACKGROUND Live attenuated influenza vaccine (LAIV) and trivalent inactivated influenza vaccine (TIV) are effective for prevention of influenza virus infection in children, but the mechanisms associated with protection are not well defined. METHODS We analyzed the differences in B-cell responses and transcriptional profiles in children aged 6 months to 14 years immunized with these 2 vaccines. RESULTS LAIV elicited a significant increase in naive, memory, and transitional B cells on day 30 after vaccination, whereas TIV elicited an increased number of plasmablasts on day 7. Antibody titers against the 3 vaccine strains (H1N1, H3N2, and B) were significantly higher in the TIV group and correlated with number of antibody-secreting cells. Both vaccines induced overexpression of interferon (IFN)-signaling genes but with different kinetics. TIV induced expression of IFN genes on day 1 after vaccination in all age groups, and LAIV induced expression of IFN genes on day 7 after vaccination but only in children <5 years old. IFN-related genes overexpressed in both vaccinated groups correlated with H3N2 antibody titers. CONCLUSIONS These results suggest that LAIV and TIV induced significantly different B-cell responses in vaccinated children. Early induction of IFN appears to be important for development of antibody responses.


Journal of Experimental Medicine | 2017

A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis

Alma Martina Cepika; Romain Banchereau; Elodie Segura; Marina Ohouo; Brandi L. Cantarel; Kristina Goller; Victoria Cantrell; Emily Ruchaud; Elizabeth Gatewood; Phuong Nguyen; Jinghua Gu; Esperanza Anguiano; Sandra Zurawski; Jeanine M. Baisch; Marilynn Punaro; Nicole Baldwin; Gerlinde Obermoser; Karolina Palucka; Jacques Banchereau; Sebastian Amigorena; Virginia Pascual

The etiology of sporadic human chronic inflammatory diseases remains mostly unknown. To fill this gap, we developed a strategy that simultaneously integrates blood leukocyte responses to innate stimuli at the transcriptional, cellular, and secreted protein levels. When applied to systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory disease of unknown etiology, this approach identified gene sets associated with specific cytokine environments and activated leukocyte subsets. During disease remission and off treatment, sJIA patients displayed dysregulated responses to TLR4, TLR8, and TLR7 stimulation. Isolated sJIA monocytes underexpressed the IL-1 inhibitor aryl hydrocarbon receptor (AHR) at baseline and accumulated higher levels of intracellular IL-1&bgr; after stimulation. Supporting the demonstration that AHR down-regulation skews monocytes toward macrophage differentiation, sJIA monocytes differentiated in vitro toward macrophages, away from the dendritic cell phenotype. This might contribute to the increased incidence of macrophage activation syndrome in these patients. Integrated analysis of high-dimensional data can thus unravel immune alterations predisposing to complex inflammatory diseases.


Cancer Research | 2018

IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer

Te-Chia Wu; Kangling Xu; Jan Martinek; Robyn R. Young; Romain Banchereau; Joshy George; Jacob Turner; Kyung In Kim; Sandra Zurawski; Xuan Wang; Derek Blankenship; Hannah M. Brookes; Florentina Marches; Gerlinde Obermoser; Elizabeth Lavecchio; Maren K. Levin; Sookyoung Bae; Cheng-Han Chung; Jl Smith; Alma-Martina Cepika; Kyp L. Oxley; George Snipes; Jacques Banchereau; Virginia Pascual; Joyce O'Shaughnessy; A. Karolina Palucka

Inflammation affects tumor immune surveillance and resistance to therapy. Here, we show that production of IL1β in primary breast cancer tumors is linked with advanced disease and originates from tumor-infiltrating CD11c+ myeloid cells. IL1β production is triggered by cancer cell membrane-derived TGFβ. Neutralizing TGFβ or IL1 receptor prevents breast cancer progression in humanized mouse model. Patients with metastatic HER2- breast cancer display a transcriptional signature of inflammation in the blood leukocytes, which is attenuated after IL1 blockade. When present in primary breast cancer tumors, this signature discriminates patients with poor clinical outcomes in two independent public datasets (TCGA and METABRIC).Significance: IL1β orchestrates tumor-promoting inflammation in breast cancer and can be targeted in patients using an IL1 receptor antagonist. Cancer Res; 78(18); 5243-58. ©2018 AACRSee related commentary by Dinarello, p. 5200.

Collaboration


Dive into the Gerlinde Obermoser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Randy A. Albrecht

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alma Martina Cepika

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge