German A. Islan
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by German A. Islan.
Macromolecular Bioscience | 2012
Cecilia Dini; German A. Islan; Patricio de Urraza; Guillermo R. Castro
Phage therapy by oral administration requires enhanced resistance of phages to the harsh gastric conditions. The aim of this work is the microencapsulation of phages in natural biopolymeric matrices as a protective barrier against the gastric environment. Alginate and pectin are used as base polymers. Further emulsification with oleic acid or coating with a different biopolymer is also studied. Emulsified pectin shows the maximum encapsulation efficiency and the highest protection against acidity, leaving more than 10(3) active phages after 30 min exposure at pH = 1.6, and protects phage from pepsin activity (4.2 mg mL(-1)). Non-encapsulated phages are fully inactivated at pH = 1.6 or with pepsin (0.5 mg mL(-1)) after 10 min.
Macromolecular Bioscience | 2013
German A. Islan; Valeria E. Bosio; Guillermo R. Castro
A new formulation is described based on biopolymeric microspheres containing alginate lyase (AL) and ciprofloxacin (Cip) for sustainable oral delivery in CF patients. Alginate (ALG) and high-methoxyl pectin (HMP) are selected as the biopolymers to develop a composite matrix. ALG microspheres coated with HMP and ALG-HMP blend are gelled in water/organic solvents mixtures, obtaining Cip encapsulations from 46.0 to 100.0%. ALG-HMP shows a Cip sustainable release profile and is able to encapsulate 90.0% of AL, showing 76.0% enzyme activity after release under simulated intestinal conditions. The developed system is a promising delivery carrier to treat chronic infection of Pseudomonas aeruginosa and to reduce the viscoelasticity of the mucus accumulated into intestine of CF patients.
Critical Reviews in Biotechnology | 2015
Valeria E. Bosio; German A. Islan; Yanina N. Martinez; Nelson Durán; Guillermo R. Castro
Abstract Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst–nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix–enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.
International Journal of Biological Macromolecules | 2015
German A. Islan; Arup Mukherjee; Guillermo R. Castro
Screening of biopolymeric gel beads containing Silver NanoParticles (Ag-NPs) stabilized in Guar Gum Alkyl Amine (GGAA) and Ciprofloxacin (Cip) was carried out in order to obtain a novel nanocomposite with controlled release profile of both antimicrobians. The selected matrix composed of Alginate/High Methoxyl Pectin (HMP)/GGAA (4:4:1) was able to co-incorporate Ag-NPs and Cip with encapsulation efficiency higher than 70%. SEM images revealed good cohesivity and compatibility between the biopolymers and the cargos. Beads provided protection against Ag-NPs degradation at acidic pHs and HMP would played a key role providing hydrophobic regions. While Cip release profile showed a pH independent diffusional process, Ag-NPs release was restricted to matrix erodability. Calcium quelating agents and/or alginate degrading enzymes could modulate the release profile. The bactericidal activity of beads was tested in liquid medium, showing cooperative effects between the antimicrobials against Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus and Staphylococcus aureus. TEM images confirmed interaction of Ag-NPs with bacterial surfaces followed by membrane damage. Results suggested the nanocomposite matrix as a promising system for oral treatment of intestinal infectious diseases caused by multidrug resistant and unknown microorganisms, since both Cip and Ag-NPs would be able to reach intestine in the active form.
Drug Delivery | 2014
German A. Islan; Guillermo R. Castro
Abstract Context: Ciprofloxacin (Cip) is a broad spectrum antibiotic frequently used in the treatment of infectious diseases caused by Pseudomonas aeruginosa. Cip oral administration is commonly associated with poor drug biodisponibility, gastrointestinal tract irritation, and toxic undesirable side effects. Objective: The aim of this work is to provide an oral biopolymeric system for controlled release of Cip. Materials and methods: Alginate–gelatin blend microspheres were crosslinked in the presence of 1,2-propylene glycol, calcium, and glutaraldehyde. Studies of Cip encapsulation and release were performed. Matrix characteristics were studied simultaneously by optical microscopy and Fourier transform infrared spectroscopy (FTIR) using synchrotron light, and by texturometric analysis. Microsphere surface topologies were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and epifluorescence microscopy. Results: Microspheres crosslinked with glutaraldehyde showed about 80% Cip encapsulation and less than 10% Cip release under simulated gastric conditions in 15 min, while a controlled release profile was observed at intestinal environment conditions. Antimicrobial activity against P. aeruginosa showed an increasing bacterial growth inhibition in time. Finally, bovine serum albumin (BSA) was used as model protein for binding of macromolecules onto active surface of microspheres, with a consequently modulation of Cip release. Discussion and conclusions: The results are indicating that alginate/gelatin matrix crosslinked via Ca2+ and glutaraldehyde can be tailored by decorating the microsphere surface with biological active molecules useful for targeting, making a potential tool to improve Cip oral administration for infection diseases.
Applied Biochemistry and Biotechnology | 2014
Cecilia Dini; German A. Islan; Guillermo R. Castro
Alginate and low methoxylated pectin gel matrices emulsified with oleic acid were studied for phage oral delivery. Matrix structural analysis revealed that emulsified pectin (EP) gel microbeads were harder and more cohesive than those of emulsified alginate (EA). EP showed high swelling capacity and slower matrix degradation in aqueous media, suggesting that oleic acid is mainly located on the surface of EP microbeads. EA and EP matrices having p-nitrophenyl palmitate (C-16 ester) as tracer dissolved into oleic acid and in the presence of lipase confirmed this hypothesis which is consistent with EP better phage protective capability. Surface analysis of gel microbeads by scanning electron microscopy revealed strong differences between EP and EA gel microbeads. Phage release kinetics was tested using semi-empirical mathematical models. Experimental curve best fitted the Korsmeyer–Peppas model, predicting transport mechanisms according to the high swelling and degradation of EP. The proposed encapsulation model represents an innovative technology for phage therapy, which can be extrapolated to other therapeutic purposes, using a simple environmentally friendly synthesis procedure and cheap food-grade raw materials.
Colloids and Surfaces B: Biointerfaces | 2017
Boris Rodenak-Kladniew; German A. Islan; Margarita María García de Bravo; Nelson Durán; Guillermo R. Castro
Linalool (LN) is a monoterpene found in essential oils of plants and herbs that produces multiple effects on the mevalonate pathway and interesting antiproliferative activity in cancer cells. However, due to its poor aqueous solubility, an efficient vehicle is needed to improve its administration and bioavailability in physiological media. LN encapsulation in solid lipid nanoparticles (SLN) with different compositions was explored and in vitro tested in two cancer cell lines. SLN of myristyl myristate (MM), cetyl esters (SS) and cetyl palmitate (CP) were prepared by sonication in the presence of Pluronic®F68 as surfactant. Nanoparticle size, morphology and distribution were determined by dynamic light scattering in combination with optical and transmission electron microscopy (TEM). SLN showed spherical shape and mean diameters in the range of 90-130nm with narrow size dispersion (PDI values lower than 0.2) and Z potentials around -4.0mV. The encapsulation percentages of LN in SLN were higher than 80% for all tested formulations and exhibited in vitro LN controlled release profiles for at least 72h. The nanoparticles were physicochemically characterized by FTIR, XRD, DSC and TGA, and the incorporation of LN into SLN was higher than 80% in tested matrices. The developed formulations, and in particular SLN (MM)-LN, showed in vitro antiproliferative effects on hepatocarcinoma (HepG2) and lung adenocarcinoma (A549) cell lines in a dose-dependent response, and higher inhibitory effects were found in comparison with free LN. The cellular uptake of SLN was demonstrated by fluorescence microscopy, enhancing the ability of nanoparticles to intracellularly deliver the cargo molecules.
Colloids and Surfaces B: Biointerfaces | 2016
Lina M. Blandón; German A. Islan; Guillermo R. Castro; Miguel D. Noseda; Vanete Thomaz-Soccol; Carlos Ricardo Soccol
Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms.
International Journal of Pharmaceutics | 2015
German A. Islan; Cecilia Dini; Laura C. Bartel; Alejandro D. Bolzán; Guillermo R. Castro
The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions.
Acta Tropica | 2017
German A. Islan; Marcela Durán; Maximiliano L. Cacicedo; Gerson Nakazato; Diego Stéfani T. Martinez; Guillermo R. Castro; Nelson Durán
The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases. Recently, very few reviews focusing on filiarasis, leishmaniasis, leprosy, malaria, onchocerciasis, schistosomiasis, trypanosomiasis, and tuberculosis, and dengue virus have been published. New developments in nanocarriers have made promising advances in the treatment of several kinds of diseases with less toxicity, high efficacy and improved bioavailability of drugs with extended release and fewer applications. This review deals with the current status of nanobiotechnology in the treatment of neglected diseases and highlights how it provides key tools for exploring new perspectives in the treatment of a wide range of diseases.