German Kilimnik
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by German Kilimnik.
Islets | 2009
Abraham Kim; Kevin Miller; Junghyo Jo; German Kilimnik; Pawel Wojcik; Manami Hara
Emerging reports on the organization of the different hormone-secreting cell types (alpha, glucagon; beta, insulin; and delta, somatostatin) in human islets have emphasized the distinct differences between human and mouse islets, raising questions about the relevance of studies of mouse islets to human islet physiology. Here, we examine the differences and similarities between the architecture of human and mouse islets. We studied islets from various mouse models including ob/ob and db/db and pregnant mice. We also examined the islets of monkeys, pigs, rabbits and birds for further comparisons. Despite differences in overall body and pancreas size as well as total beta-cell mass among these species, the distribution of their islet sizes closely overlaps, except in the bird pancreas in which the delta-cell population predominates (both in singlets and clusters) along with a small number of islets. Markedly large islets (>10,000 µm2) were observed in human and monkey islets as well as in islets from ob/ob and pregnant mice. The fraction of α-, β-, and δ-cells within an islet varied between islets in all the species examined. Furthermore, there was variability in the distribution of alpha- and delta-cells with the same species. In summary, human and mouse islets share common architectural features that may reflect demand for insulin. Comparative studies of islet architecture may lead to a better understanding of islet development and function.
Islets | 2010
German Kilimnik; Abraham Kim; Donald F. Steiner; Theodore C. Friedman; Manami Hara
The islet of Langerhans is a highly vascularized micro-organ consisting of not only beta-cells but multiple cell types such as α-, δ-, pancreatic polypeptide- and epsilon-cells that work together to regulate glucose homeostatis. We have recently proposed a new model of the neonatal islet formation in mice by a process of fission following contiguous endocrine cell proliferation in the form of branched cord-like structures in embryos and newborns. There exist large stretches of interconnected islet structures along large blood vessels in the neonatal pancreas, which upon further development segregate into smaller fragments (i.e. islets) that eventually become more spherical by internal proliferation as seen in the adult pancreas. α-cells span these elongated islet-like structures in the developing pancreas, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. The α-cells express both prohormone convertase 2 and 1/3 (PC2 and PC1/3, respectively), which resulted in the processing of the proglucagon precursor into glucagon-like peptide 1, thereby leading to local production of this important β-cell growth factor. Furthermore, while α-cells in the adult basically only express PC2, significant activation of PC1/3 is also observed in mouse models of insulin resistance such as pregnant, ob/ob, db/db and prediabetic NOD mice, which may be a common mechanism in proliferating β-cells. Our study suggests an important role for alpha-cells for β-cell proliferation and further that of the endocrine cell network within an islet.
PLOS ONE | 2011
German Kilimnik; Billy Zhao; Junghyo Jo; Vipul Periwal; Piotr Witkowski; Ryosuke Misawa; Manami Hara
Human islets exhibit distinct islet architecture with intermingled alpha- and beta-cells particularly in large islets. In this study, we quantitatively examined pathological changes of the pancreas in patients with type 2 diabetes (T2D). Specifically, we tested a hypothesis that changes in endocrine cell mass and composition are islet-size dependent. A large-scale analysis of cadaveric pancreatic sections from T2D patients (n = 12) and non-diabetic subjects (n = 14) was carried out combined with semi-automated analysis to quantify changes in islet architecture. The method provided the representative islet distribution in the whole pancreas section that allowed us to examine details of endocrine cell composition in individual islets. We observed a preferential loss of large islets (>60 µm in diameter) in T2D patients compared to non-diabetic subjects. Analysis of islet cell composition revealed that the beta-cell fraction in large islets was decreased in T2D patients. This change was accompanied by a reciprocal increase in alpha-cell fraction, however total alpha-cell area was decreased along with beta-cells in T2D. Delta-cell fraction and area remained unchanged. The computer-assisted quantification of morphological changes in islet structure minimizes sampling bias. Significant beta-cell loss was observed in large islets in T2D, in which alpha-cell ratio reciprocally increased. However, there was no alpha-cell expansion and the total alpha-cell area was also decreased. Changes in islet architecture were marked in large islets. Our method is widely applicable to various specimens using standard immunohistochemical analysis that may be particularly useful to study large animals including humans where large organ size precludes manual quantitation of organ morphology.
PLOS ONE | 2009
Kevin Miller; Abraham Kim; German Kilimnik; Junghyo Jo; Uchenna Moka; Vipul Periwal; Manami Hara
The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented.
Diabetes Research and Clinical Practice | 2009
Michael Kharouta; Kevin Miller; Abraham Kim; Pawel Wojcik; German Kilimnik; Arunangsu Dey; Donald F. Steiner; Manami Hara
Emerging reports on human islets emphasize distinct differences from the widely accepted prototype of rodent islets, raising questions over their suitability for human studies. Here we aim at elucidating architectural differences and similarities of human versus rodent islets. The cellular composition and architecture of human and rodent islets were compared through three-dimensional (3D) reconstructions. Physiological and pathological changes were examined using islets from various mouse models such as non-obese diabetic (NOD), ob/ob, db/db mice and during pregnancy. A subpopulation of human islets is composed of clusters of alpha-cells within the central beta-cell cores, while the overall proportion of alpha-cells varies among islets. In mouse islets under normal conditions, alpha-cells are localized in the islet periphery, but they do not envelop the entire beta-cell core, so that beta-cells are exposed on the outer layer of the islet, as in most human islets. Also, an increased proportion of alpha-cells within the central core is observed in the pancreas of mouse models exhibiting increased demand for insulin. In summary, human and mouse islets share common architectural features as endocrine micro-organs. Since these may hold a key to better understanding islet plasticity, our concept of the prototypic islet should be revised.
Islets | 2012
German Kilimnik; Junghyo Jo; Vipul Periwal; Mark C. Zielinski; Manami Hara
Human islets exhibit distinct islet architecture particularly in large islets that comprise of a relatively abundant fraction of α-cells intermingled with β-cells, whereas mouse islets show largely similar architecture of a β-cell core with α-cells in the periphery. In humans, islet architecture is islet-size dependent. Changes in endocrine cell mass preferentially occurred in large islets as demonstrated in our recent study on pathological changes of the pancreas in patients with type 2 diabetes.1 The size dependency of human islets in morphological changes prompted us to develop a method to capture the representative islet distribution in the whole pancreas section combined with a semi-automated analysis to quantify changes in islet architecture. The computer-assisted quantification allows detailed examination of endocrine cell composition in individual islets and minimizes sampling bias. The standard immunohistochemistry based method is widely applicable to various specimens, which is particularly useful for large animal studies but is also applied to a large-scale analysis of the whole organ section from mice. In this article, we describe the method of image capture, parameters measured, data analysis and interpretation of the data.
American Journal of Physiology-endocrinology and Metabolism | 2009
German Kilimnik; Abraham Kim; Junghyo Jo; Kevin Miller; Manami Hara
Tracing changes of specific cell populations in health and disease is an important goal of biomedical research. Precisely monitoring pancreatic beta-cell proliferation and islet growth is a challenging area of research. We have developed a method to capture the distribution of beta-cells in the intact pancreas of transgenic mice with fluorescence-tagged beta-cells with a macro written for ImageJ (rsb.info.nih.gov/ij/). Total beta-cell area and islet number and size distribution are quantified with reference to specific parameters and location for each islet and for small clusters of beta-cells. The entire distribution of islets can now be plotted in three dimensions, and the information from the distribution on the size and shape of each islet allows a quantitative and a qualitative comparison of changes in overall beta-cell area at a glance.
Annals of Surgery | 2011
Natalia Marek; Adam Krzystyniak; Ipek Ergenc; Olivia Cochet; Ryosuke Misawa; Ling-Jia Wang; Karolina Gołąb; Xiaojun Wang; German Kilimnik; Manami Hara; Seda Kizilel; Piotr Trzonkowski; J. Michael Millis; Piotr Witkowski
Objectives:To develop a novel approach for local immunoprotection using CD4+CD25highCD127– T regulatory cells (Tregs) attached to the surface of the islets before transplantation. Background:Tregs expanded ex vivo can control allo and autoreactivity, therefore, Treg-based therapy may offer more effective protection for transplanted islets from immunologic attack than currently used immunosuppression. Local application of Tregs can make such therapy more clinically feasible and efficient. Methods:Human islets were isolated and coated with allogeneic ex vivo expanded Tregs using biotin-poly(ethylene glycol)-N-hydroxysuccinimide ester (biotin-PEG-NHS) and streptavidin as binding molecules. Results:Coating pancreatic islets with Tregs did not affect islet viability (>90% fluorescein diacetate/propidium iodide) or the insulin secretion profile in dynamic islet perifusion assays. After in vitro incubation with allogeneic T effector cells, Treg-coated islets revealed preserved function with higher insulin secretion compared with controls-native islets, coated islets with T effector cells or when Tregs were added to the culture, but not attached to islets (P < 0.05). In addition, the Enzyme-linked immunosorbent spot (ELISPOT) assay revealed suppression of interferon (IFN)-&ggr; secretion, when T effector cells were challenged with Treg-coated islets comparing to controls (99 ± 7 vs 151 ± 8 dots, respectively; P < 0.01). Conclusions:We demonstrated, for the first time, the ability to bind immune regulatory cells to target cells with preservation of their viability and function and protective activity against immune attack. If successfully tested in an animal model, local delivery of immunoprotective Tregs on the surface of transplanted pancreatic islets may be an alternative or improvement to the currently used immunosuppression.
Biophysical Journal | 2011
Junghyo Jo; German Kilimnik; Abraham Kim; Charles Guo; Vipul Periwal; Manami Hara
The islets of Langerhans, micro-organs for maintaining glucose homeostasis, range in size from small clusters of <10 cells to large islets consisting of several thousand endocrine cells. Islet size distributions among various species are similar and independent of body size, suggesting an intrinsic limit to islet size. Little is known about the mechanisms regulating islet size. We have carried out a comprehensive analysis of changes of islet size distribution in the intact mouse pancreas from birth to eight months, including mathematical modeling to quantify this dynamic biological process. Islet growth was size-dependent during development, with preferential expansion of smaller islets and fission of large interconnected islet-like structures occurring most actively at approximately three weeks of age at the time of weaning. The process of islet formation was complete by four weeks with little or no new islet formation thereafter, and all the β-cells had low proliferation potential in the adult, regardless of islet size. Similarly, in insulinoma-bearing mice, the early postnatal developmental process including fission followed the same time course with no new islet formation in adults. However, tumor progression led to uncontrolled islet growth with accelerated expansion of larger islets. Thus, islet formation and growth is a tightly regulated process involving preferential expansion of small islets and fission of large interconnected islet-like structures.
Scientific Reports | 2016
Ananta Poudel; Jonas L. Fowler; Mark C. Zielinski; German Kilimnik; Manami Hara
The large size of human tissues requires a practical stereological approach to perform a comprehensive analysis of the whole organ. We have developed a method to quantitatively analyze the whole human pancreas, as one of the challenging organs to study, in which endocrine cells form various sizes of islets that are scattered unevenly throughout the exocrine pancreas. Furthermore, the human pancreas possesses intrinsic characteristics of intra-individual variability, i.e. regional differences in endocrine cell/islet distribution, and marked inter-individual heterogeneity regardless of age, sex and disease conditions including obesity and diabetes. The method is built based on large-scale image capture, computer-assisted unbiased image analysis and quantification, and further mathematical analyses, using widely-used software such as Fiji/ImageJ and MATLAB. The present study includes detailed protocols of every procedure as well as all the custom-written computer scripts, which can be modified according to specific experimental plans and specimens of interest.