German Salazar-Alvarez
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by German Salazar-Alvarez.
Nature Nanotechnology | 2010
Richard T. Olsson; Azizi Samir; German Salazar-Alvarez; Liubov Belova; Valter Ström; Lars Berglund; Olli Ikkala; J. Nogues; Ulf W. Gedde
Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.
Nature Nanotechnology | 2015
Bernd Wicklein; Andraž Kocjan; German Salazar-Alvarez; Federico Carosio; Giovanni Camino; Markus Antonietti; Lennart Bergström
High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.
Science and Technology of Advanced Materials | 2013
Bertrand Faure; German Salazar-Alvarez; Anwar Ahniyaz; Irune Villaluenga; Gemma Berriozabal; Yolanda R. de Miguel; Lennart Bergström
Abstract This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.
Physics Reports | 2015
Alberto López-Ortega; Marta Estrader; German Salazar-Alvarez; Alejando G. Roca; Josep Nogués
A B S T R A C T The applications of exchange coupled bi-magnetic hard/soft and soft/hard ferromagnetic core/shell nanoparticles are reviewed. After a brief description of the main synthesis approaches and the core/shell structural-morphological characterization, the basic static and dynamic magnetic properties are presented. Five different types of prospective applications, based on diverse patents and research articles, are described: permanent magnets, recording media, microwave absorption, biomedical applications and other applications. Both the advantages of the core/shell morphology and some of the remaining challenges are discussed.
Journal of the American Chemical Society | 2008
German Salazar-Alvarez; Jian Qin; V. Šepelák; I. Bergmann; Marianna Vasilakaki; K. N. Trohidou; J. D. Ardisson; W. A. A. Macedo; Maria Mikhaylova; Mamoun Muhammed; M.D. Baró; J. Nogués
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.
Nano Letters | 2011
Sabrina Disch; Erik Wetterskog; Raphaël P. Hermann; German Salazar-Alvarez; Peter Busch; Thomas Brückel; Lennart Bergström; Saeed Kamali
Grazing incidence small-angle scattering and electron microscopy have been used to show for the first time that nonspherical nanoparticles can assemble into highly ordered body-centered tetragonal mesocrystals. Energy models accounting for the directionality and magnitude of the van der Waals and dipolar interactions as a function of the degree of truncation of the nanocubes illustrated the importance of the directional dipolar forces for the formation of the initial nanocube clusters and the dominance of the van der Waals multibody interactions in the dense packed arrays.
Nature Communications | 2013
Marta Estrader; Alberto López-Ortega; S. Estradé; Igor V. Golosovsky; German Salazar-Alvarez; Marianna Vasilakaki; K. N. Trohidou; M. Varela; D. C. Stanley; M. Sinko; M. J. Pechan; D. J. Keavney; F. Peiró; S. Suriñach; M.D. Baró; J. Nogués
The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.
Journal of the American Chemical Society | 2010
Alberto López-Ortega; Dina Tobia; E. Winkler; Igor V. Golosovsky; German Salazar-Alvarez; S. Estradé; Marta Estrader; Jordi Sort; Miguel Angel González; S. Suriñach; Jordi Arbiol; F. Peiró; R. D. Zysler; Maria Dolors Baró; Josep Nogués
The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly gamma-Mn(2)O(3) shell, larger ones have increasing amounts of Mn(3)O(4). A considerable enhancement of the Néel temperature, T(N), and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains.
ACS Nano | 2013
Erik Wetterskog; Cheuk-Wai Tai; Jekabs Grins; Lennart Bergström; German Salazar-Alvarez
Here we demonstrate that the anomalous magnetic properties of iron oxide nanoparticles are correlated with defects in their interior. We studied the evolution of microstructure and magnetic properties of biphasic core|shell Fe(1-x)O|Fe(3-δ)O4 nanoparticles synthesized by thermal decomposition during their topotaxial oxidation to single-phase nanoparticles. Geometric phase analysis of high-resolution electron microscopy images reveals a large interfacial strain at the core|shell interface and the development of antiphase boundaries. Dark-field transmission electron microscopy and powder X-ray diffraction concur that, as the oxidation proceeds, the interfacial strain is released as the Fe(1-x)O core is removed but that the antiphase boundaries remain. The antiphase boundaries result in anomalous magnetic behavior, that is, a reduced saturation magnetization and exchange bias effects in single-phase nanoparticles. Our results indicate that internal defects play an important role in dictating the magnetic properties of iron oxide nanoparticles.
Langmuir | 2011
Bertrand Faure; German Salazar-Alvarez; Lennart Bergström
The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanoparticles interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 - 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.