Gernot Hochleitner
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gernot Hochleitner.
BioNanoMaterials | 2016
Gernot Hochleitner; Almoatazbellah Youssef; Andrei Hrynevich; Jodie N. Haigh; Tomasz Jungst; Jürgen Groll; Paul D. Dalton
Abstract Additive manufacturing with electrohydrodynamic direct writing is a promising approach for the production of polymeric microscale objects. In this study we investigate the stability of one such process, melt electrospinning writing, to maintain accurate placement of the deposited fibre throughout the entire print. The influence of acceleration voltage and feeding pressure on the deposited poly(ε-caprolactone) fibre homogeneity is described, and how this affects the variable lag of the jet drawn by the collector movement. Three classes of diameter instabilities were observed that led to poor printing quality: (1) temporary pulsing, (2) continuous pulsing, and (3) regular long bead defects. No breakup of the electrified jet was observed for any of the experiments. A simple approach is presented for the melt electrospinning user to evaluate fibre writing integrity, and adjust the processing parameters accordingly to achieve reproducible and constant diameter fibres.
Biomacromolecules | 2016
Fei Chen; Gernot Hochleitner; Tim B. F. Woodfield; Juergen Groll; Paul D. Dalton; Brian G. Amsden
Melt electrospinning writing (MEW) is an emerging additive manufacturing technique that enables the design and fabrication of micrometer-thin fibrous scaffolds made of biocompatible and biodegradable polymers. By using a computer-aided deposition process, a unique control over pore size and interconnectivity of the resulting scaffolds is achieved, features highly interesting for tissue engineering applications. However, MEW has been mainly used to process low melting point thermoplastics such as poly(ε-caprolactone). Since this polymer exhibits creep and a reduction in modulus upon hydration, we manufactured scaffolds of poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (poly(LLA-ε-CL-AC)), a photo-cross-linkable and biodegradable polymer, for the first time. We show that the stiffness of the scaffolds increases significantly (up to ∼10-fold) after cross-linking by UV irradiation at room temperature, compared with un-cross-linked microfiber scaffolds. The preservation of stiffness and high average fiber modulus (370 ± 166 MPa) within the cross-linked hydrated scaffolds upon repetitive loading (10% strain at 1 Hz up to 200,000 cycles) suggests that the prepared scaffolds may be of potential interest for soft connective tissue engineering applications. Moreover, the approach can be readily adapted through manipulation of polymer properties and scaffold geometry to prepare structures with mechanical properties suitable for other tissue engineering applications.
Advanced Healthcare Materials | 2017
Miguel Castilho; Dries Feyen; María Flandes-Iparraguirre; Gernot Hochleitner; Jürgen Groll; Pieter A. Doevendans; Tina Vermonden; Keita Ito; Joost P.G. Sluijter; Jos Malda
Current limitations in cardiac tissue engineering revolve around the inability to fully recapitulate the structural organization and mechanical environment of native cardiac tissue. This study aims at developing organized ultrafine fiber scaffolds with improved biocompatibility and architecture in comparison to the traditional fiber scaffolds obtained by solution electrospinning. This is achieved by combining the additive manufacturing of a hydroxyl-functionalized polyester, (poly(hydroxymethylglycolide-co-ε-caprolactone) (pHMGCL), with melt electrospinning writing (MEW). The use of pHMGCL with MEW vastly improves the cellular response to the mechanical anisotropy. Cardiac progenitor cells (CPCs) are able to align more efficiently along the preferential direction of the melt electrospun pHMGCL fiber scaffolds in comparison to electrospun poly(ε-caprolactone)-based scaffolds. Overall, this study describes for the first time that highly ordered microfiber (4.0-7.0 µm) scaffolds based on pHMGCL can be reproducibly generated with MEW and that these scaffolds can support and guide the growth of CPCs and thereby potentially enhance their therapeutic potential.
Small | 2018
Mylène de Ruijter; Andrei Hrynevich; Jodie N. Haigh; Gernot Hochleitner; Miguel Castilho; Jürgen Groll; Jos Malda; Paul D. Dalton
One challenge in biofabrication is to fabricate a matrix that is soft enough to elicit optimal cell behavior while possessing the strength required to withstand the mechanical load that the matrix is subjected to once implanted in the body. Here, melt electrowriting (MEW) is used to direct-write poly(ε-caprolactone) fibers “out-of-plane” by design. These out-of-plane fibers are specifically intended to stabilize an existing structure and subsequently improve the shear modulus of hydrogel-fiber composites. The stabilizing fibers (diameter = 13.3 ± 0.3 μm) are sinusoi-dally direct-written over an existing MEW wall-like structure (330 μm height). The printed constructs are embedded in different hydrogels (5, 10, and 15 wt% polyacrylamide; 65% poly(2-hydroxyethyl methacrylate) (pHEMA)) and a frequency sweep test (0.05-500 rad s-1, 0.01% strain, n = 5) is performed to measure the complex shear modulus. For the rheological measurements, stabilizing fibers are deposited with a radial-architecture prior to embedding to correspond to the direction of the stabilizing fibers with the loading of the rheometer. Stabilizing fibers increase the complex shear modulus irrespective of the percentage of gel or crosslinking density. The capacity of MEW to produce well-defined out-of-plane fibers and the ability to increase the shear properties of fiber-reinforced hydrogel composites are highlighted.
Scientific Reports | 2018
Miguel Castilho; Gernot Hochleitner; W. Wilson; Bert van Rietbergen; Paul D. Dalton; Jürgen Groll; Jos Malda; Keita Ito
Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions.
Small | 2018
Andrei Hrynevich; Bilge Ş. Elçi; Jodie N. Haigh; Rebecca McMaster; Almoatazbellah Youssef; Carina Blum; Torsten Blunk; Gernot Hochleitner; Jürgen Groll; Paul D. Dalton
The electrohydrodynamic stabilization of direct-written fluid jets is explored to design and manufacture tissue engineering scaffolds based on their desired fiber dimensions. It is demonstrated that melt electrowriting can fabricate a full spectrum of various fibers with discrete diameters (2-50 µm) using a single nozzle. This change in fiber diameter is digitally controlled by combining the mass flow rate to the nozzle with collector speed variations without changing the applied voltage. The greatest spectrum of fiber diameters was achieved by the simultaneous alteration of those parameters during printing. The highest placement accuracy could be achieved when maintaining the collector speed slightly above the critical translation speed. This permits the fabrication of medical-grade poly(ε-caprolactone) into complex multimodal and multiphasic scaffolds, using a single nozzle in a single print. This ability to control fiber diameter during printing opens new design opportunities for accurate scaffold fabrication for biomedical applications.
Small | 2018
Sarah Bertlein; Daichi Hikimoto; Gernot Hochleitner; Julia Hümmer; Tomasz Jungst; Michiya Matsusaki; Mitsuru Akashi; Jürgen Groll
A remaining challenge in tissue engineering approaches is the in vitro vascularization of engineered constructs or tissues. Current approaches in engineered vascularized constructs are often limited in the control of initial vascular network geometry, which is crucial to ensure full functionality of these constructs with regard to cell survival, metabolic activity, and potential differentiation ability. Herein, the combination of 3D-printed poly-ε-caprolactone scaffolds via melt electrospinning writing with the cell-accumulation technique to enable the formation and control of capillary-like network structures is reported. The cell-accumulation technique is already proven itself to be a powerful tool in obtaining thick (50 µm) tissues and its main advantage is the rapid production of tissues and its ease of performance. However, the applied combination yields tissue thicknesses that are doubled, which is of outstanding importance for an improved handling of the scaffolds and the generation of clinically relevant sample volumes. Moreover, a correlation of increasing vascular endothelial growth factor secretion to hypoxic conditions with increasing pore sizes and an assessment of the formation of neovascular like structures are included.
Acta Biomaterialia | 2018
Gernot Hochleitner; Fei Chen; Carina Blum; Paul D. Dalton; Brian G. Amsden; Jürgen Groll
Ligaments and tendons are comprised of aligned, crimped collagen fibrils that provide tissue-specific mechanical properties with non-linear extension behaviour, exhibiting low stress at initial strain (toe region behaviour). To approximate this behaviour, we report fibrous scaffolds with sinusoidal patterns by melt electrowriting (MEW) below the critical translation speed (CTS) by exploitation of the natural flow behaviour of the polymer melt. More specifically, we synthesised photopolymerizable poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (p(LLA-co-ε-CL-co-AC)) and poly(ε-caprolactone-co-acryloyl carbonate) (p(ε-CL-co-AC)) by ring-opening polymerization (ROP). Single fibre (fØ = 26.8 ± 1.9 µm) tensile testing revealed a customisable toe region with Youngs Moduli ranging from E = 29 ± 17 MPa for the most crimped structures to E = 314 ± 157 MPa for straight fibres. This toe region extended to scaffolds containing multiple fibres, while the sinusoidal pattern could be influenced by printing speed. The synthesized polymers were cytocompatible and exhibited a tensile strength of σ = 26 ± 7 MPa after 104 cycles of preloading at 10% strain while retaining the distinct toe region commonly observed in native ligaments and tendon tissue. STATEMENT OF SIGNIFICANCE Damaged tendons and ligaments are serious and frequently occurring injuries worldwide. Recent therapies, including autologous grafts, still have severe disadvantages leading to a demand for synthetic alternatives. Materials envisioned to induce tendon and ligament regeneration should be degradable, cytocompatible and mimic the ultrastructural and mechanical properties of the native tissue. Specifically, we utilised photo-cross-linkable polymers for additive manufacturing (AM) with MEW. In this way, we were able to direct-write cytocompatible fibres of a few micrometres thickness into crimp-structured elastomer scaffolds that mimic the non-linear biomechanical behaviour of tendon and ligament tissue.
Macromolecular Rapid Communications | 2018
Gernot Hochleitner; Eva Fürsattel; Reiner Giesa; Jürgen Groll; Hans-Werner Schmidt; Paul D. Dalton
Melt electrowriting (MEW), an additive manufacturing process, is established using polycaprolactone as the benchmark material. In this study, a thermoplastic elastomer, namely, poly(urea-siloxane), is synthesized and characterized to identify how different classes of polymers are compatible with MEW. This polyaddition polymer has reversible hydrogen bonding from the melt upon heating/cooling and highly resolved structures are achieved by MEW. The influence of applied voltage, temperature, and feeding pressure on printing outcomes behavior is optimized. Balancing these parameters, highly uniform and smooth-surfaced fibers with diameters ranging from 10 to 20 µm result. The quality of the 3D MEW scaffolds is excellent, with very accurate fiber stacking capacity-up to 50 layers with minimal defects and good fiber fusion between the layers. There is also minimal fiber sagging between the crossover points, which is a characteristic of thicker MEW scaffolds previously reported with other polymers. In summary, poly(urea-siloxane) demonstrates outstanding compatibility with the MEW process and represents a class of polymer-thermoplastic elastomers-that are, until now, untested with this approach.
Biofabrication | 2015
Gernot Hochleitner; Tomasz Jungst; Toby D. Brown; Kathrin Hahn; Claus Moseke; Franz Jakob; Paul D. Dalton; Jürgen Groll